l before d of the is given

ositive and on uppose

1 foot,

etween

From Swo Kowski, Algebra and Trigonometry with Analytic Geometry

-R

. The

food n deyears

> 0. hen?

te R; (or

4.3 Properties of Division

In the following discussion, symbols such as f(x) and g(x) will be used to denote polynomials in x. If a polynomial g(x) is a factor of a polynomial f(x), then f(x) is said to be **divisible** by g(x). For example, the polynomial $x^4 - 16$ is divisible by $x^2 - 4$, by $x^2 + 4$, by x + 2, and by x - 2; but $x^2 + 3x + 1$ is not a factor of $x^4 - 16$. However, by long division, we can write

$$\begin{array}{r}
 x^{2} - 3x + 8 \\
 \hline
 x^{2} + 3x + 1 \overline{\smash)x^{4}} & -16 \\
 \hline
 x^{4} + 3x^{3} + x^{2} \\
 \hline
 -3x^{3} - x^{2} \\
 \hline
 -3x^{3} - 9x^{2} - 3x \\
 \hline
 8x^{2} + 3x - 16 \\
 \underline{8x^{2} + 24x + 8} \\
 -21x - 24
 \end{array}$$

The polynomial $x^2 - 3x + 8$ is called the **quotient** and -21x - 24 is the **remainder**.

Note that the long division process ends when we arrive at a polynomial (the remainder) that either is 0 or has smaller degree than the divisor. The

$$\frac{x^4 - 16}{x^2 + 3x + 1} = (x^2 - 3x + 8) + \left(\frac{-21x - 24}{x^2 + 3x + 1}\right).$$

Multiplying both sides of the equation by $\dot{x}^2 + 3x + 1$, we obtain

$$x^4 - 16 = (x^2 + 3x + 1)(x^2 - 3x + 8) + (-21x - 24).$$

This example illustrates the following theorem, which we state without proof.

DIVISION ALGORITHM FOR POLYNOMIALS

If f(x) and g(x) are polynomials and if $g(x) \neq 0$, then there exist unique polynomials g(x) and g(x) such that

$$f(x) = g(x)q(x) + r(x)$$

where either r(x) = 0, or the degree of r(x) is less than the degree of g(x). The polynomial q(x) is called the **quotient**, and r(x) is the **remainder** in the division of f(x) by g(x).

An interesting special case occurs if f(x) is divided by a polynomial of the form x - c where c is a real number. If x - c is a factor of f(x), then

$$f(x) = (x - c)q(x)$$

for some polynomial q(x); that is, the remainder r(x) is 0. If x-c is not a factor of f(x), then the degree of the remainder r(x) is less than the degree of x-c, and hence r(x) must have degree 0. This, in turn, means that the remainder is a nonzero number. Consequently, in all cases we have

$$f(x) = (x - c)q(x) + d$$

where the remainder d is some real number (possibly d = 0). If c is substituted for x in the equation f(x) = (x - c)q(x) + d, we obtain

$$f(c) = (c - c)q(c) + d,$$

which reduces to f(c) = d. This proves the following theorem.

REMAINDER THEOREM

If a polynomial f(x) is divided by x - c, then the remainder is f(c).

EXAMPLE 1 If $f(x) = x^3 - 3x^2 + x + 5$, use the Remainder Theorem to find f(2).

SOLUTION According to the Remainder Theorem, f(2) is the remainder when f(x) is divided by x-2. By long division,

$$\begin{array}{r}
x^{2} - x - 1 \\
x - 2 \overline{\smash)x^{3} - 3x^{2} + x + 5} \\
\underline{x^{3} - 2x^{2}} \\
-x^{2} + x \\
\underline{-x^{2} + 2x} \\
-x + 5 \\
\underline{-x + 2} \\
3
\end{array}$$

Hence, f(2) = 3. We may check this fact by direct substitution. Thus, $f(2) = 2^3 - 3(2)^2 + 2 + 5 = 3$.

FACTOR THEOREM

A polynomial f(x) has a factor x - c if and only if f(c) = 0.

PROOF By the Remainder Theorem, f(x) = (x - c)q(x) + f(c) for some quotient q(x). If f(c) = 0, then f(x) = (x - c)q(x); that is, x - c is a factor of f(x). Conversely, if x - c is a factor, then the remainder upon division of f(x) by x - c must be 0, and hence, by the Remainder Theorem, f(c) = 0.

The Factor Theorem is useful for finding factors of polynomials, as illustrated in the next example.

Show that x-2 is a factor of the polynomial

$$f(x) = x^3 - 4x^2 + 3x + 2.$$

SOLUTION Since f(2) = 8 - 16 + 6 + 2 = 0, it follows from the Factor Theorem that x - 2 is a factor of f(x). Of course, another method of solution would be to divide f(x) by x - 2 and show that the remainder is 0. The quotient in the division would be another factor of f(x).

Find a polynomial f(x) of degree 3 that has zeros 2, -1, and 3.

SOLUTION By the Factor Theorem, f(x) has factors x - 2, x + 1, and x - 3. We may then write

$$f(x) = a(x - 2)(x + 1)(x - 3)$$

where any nonzero value may be assigned to a. If we let a=1 and multiply, we obtain

$$f(x) = x^3 - 4x^2 + x + 6.$$

To apply the Remainder Theorem it is necessary to divide a given polynomial by x-c. A method called **synthetic division** may be used to simplify this work. The following rules state how to proceed. The method can be justified by a careful (and lengthy) comparison with the method of long division.

Synthetic Division of $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ by x - c

Begin with the following display, supplying zeros for any missing coefficients in the given polynomial.

Multiply a_n by c and place the product ca_n underneath a_{n-1} as indicated by the arrow in the following display. (This arrow, and others, is used only to help clarify these rules, and will not appear in *specific* synthetic divisions.) Next find the sum $b_1 = a_{n-1} + ca_n$ and place it below the line as shown.

- **3** Multiply b_1 by c and place the product cb_1 underneath a_{n-2} as indicated by another arrow. Next find the sum $b_2 = a_{n-2} + cb_1$ and place it below the line as shown.
- 4 Continue this process, as indicated by the arrows, until the final sum $r = a_0 + cb_{n-1}$ is obtained. The numbers

$$a_n, b_1, b_2, \ldots, b_{n-2}, b_{n-1}$$

are the coefficients of the quotient q(x); that is,

$$q(x) = a_n x^{n-1} + b_1 x^{n-2} + \dots + b_{n-2} x + b_{n-1},$$

and r is the remainder.

The following examples illustrate synthetic division for some special cases.

EXAMPLE 4 Use synthetic division to find the quotient and remainder if $2x^4 + 5x^3 - 2x - 8$ is divided by x + 3.

SOLUTION Since the divisor is x + 3, the c in the expression x - c is -3. Hence, the synthetic division takes this form:

The first four numbers in the third row are the coefficients of the quotient q(x) and the last number is the remainder r. Thus,

$$q(x) = 2x^3 - x^2 + 3x - 11$$
 and $r = 25$.

Synthetic division can be used to find values of polynomial functions, as illustrated in the next example.

EXAMPLE 5 If $f(x) = 3x^5 - 38x^3 + 5x^2 - 1$, use synthetic division to find f(4).

SOLUTION By the Remainder Theorem, f(4) is the remainder when f(x) is divided by x-4. Dividing synthetically, we obtain

Consequently, f(4) = 719.

Synthetic division may be employed to help find zeros of polynomials. By the method illustrated in the preceding example, f(c) = 0 if and only if the remainder in the synthetic division by x - c is 0.

11(1

rly,

'en to

od of

.ng

ed ed

:he

ed

ım

$$f(x) = x^3 + 8x^2 - 29x + 44.$$

SOLUTION Dividing synthetically by x - (-11) = x + 11 gives us

Thus, f(-11) = 0.

Example 6 shows that the number -11 is a solution of the equation $x^3 + 8x^2 - 29x + 44 = 0$. In Section 4.5 we shall use synthetic division to find rational solutions of equations.

Exercises 4.3

In Exercises 1–6 find the quotient q(x) and the remainder r(x) if f(x) is divided by g(x).

1
$$f(x) = x^4 + 3x^3 - 2x + 5$$
, $g(x) = x^2 + 2x - 4$

2
$$f(x) = 4x^3 - x^2 + x - 3$$
, $g(x) = x^2 - 5x$

3
$$f(x) = 5x^3 - 2x$$
, $g(x) = 2x^2 + 1$

4
$$f(x) = 3x^4 - x^3 - x^2 + 3x + 4$$
, $g(x) = 2x^3 - x + 4$

5
$$f(x) = 7x^3 - 5x + 2$$
, $g(x) = 2x^4 - 3x^2 + 9$

6
$$f(x) = 10x - 4$$
, $g(x) = 8x^2 - 5x + 17$

In Exercises 7-16 use synthetic division to find the quotient and remainder assuming the first polynomial is divided by the second.

7
$$2x^3 - 3x^2 + 4x - 5$$
, $x - 2$

$$8 \quad 3x^3 - 4x^2 - x + 8, \ x + 4$$

9
$$x^3 - 8x - 5$$
, $x + 3$

10
$$5x^3 - 6x^2 + 15$$
, $x - 4$

11
$$3x^5 + 6x^2 + 7$$
, $x + 2$

12
$$-2x^4 + 10x - 3$$
, $x - 3$

13
$$4x^4 - 5x^2 + 1$$
, $x - \frac{1}{2}$

14
$$9x^3 - 6x^2 + 3x - 4$$
, $x - \frac{1}{3}$

15
$$x^n - 1$$
, $x - 1$ where *n* is any positive integer

16
$$x^n + 1$$
, $x + 1$ where n is any positive integer

In Exercises 17–28 use the Remainder Theorem to find f(c).

17
$$f(x) = 2x^3 - x^2 - 5x + 3$$
, $c = 4$

18
$$f(x) = 4x^3 - 3x^2 + 7x + 10, c = 3$$

19
$$f(x) = x^4 + 5x^3 - x^2 + 5$$
, $c = -2$

20
$$f(x) = x^4 - 7x^2 + 2x - 8$$
, $c = -3$

21
$$f(x) = x^6 - 3x^4 + 4$$
, $c = \sqrt{2}$

22
$$f(x) = x^5 - x^4 + x^3 - x^2 + x - 1, c = -1$$

23
$$f(x) = x^4 - 4x^3 + x^2 - 3x - 5$$
, $c = 2$

24
$$f(x) = 0.3x^3 + 0.04x - 0.034$$
, $c = -0.2$

25
$$f(x) = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1, c = 4$$

26
$$f(x) = 8x^5 - 3x^2 + 7$$
, $c = \frac{1}{2}$

27
$$f(x) = x^2 + 3x - 5, c = 2 + \sqrt{3}$$

28
$$f(x) = x^3 - 3x^2 - 8$$
, $c = 1 + \sqrt{2}$

In Exercises 29–32 use synthetic division to show that c is a zero of f(x).

29
$$f(x) = 3x^4 + 8x^3 - 2x^2 - 10x + 4, c = -2$$

30
$$f(x) = 4x^3 - 9x^2 - 8x - 3$$
, $c = 3$

31
$$f(x) = 4x^3 - 6x^2 + 8x - 3$$
, $c = \frac{1}{2}$

32
$$f(x) = 27x^4 - 9x^3 + 3x^2 + 6x + 1, c = -\frac{1}{3}$$

- 33 Determine k so that $f(x) = x^3 + kx^2 kx + 10$ is divisible by x + 3.
- 34 Determine all values of k such that $f(x) = k^2x^3 4kx 3$ is divisible by x 1.
- 35 Use the Factor Theorem to show that x 2 is a factor of f $4 \quad 3x^3 2x^2 + 5x + 6.$

- 36 Show that x + 2 is a factor of $f(x) = x^{12} 4096$.
- 37 Prove that $f(x) = 3x^4 + x^2 + 5$ has no factor of the form x c where c is a real number.
- 38 Find the remainder if the polynomial $3x^{100} + 5x^{85} 4x^{38} + 2x^{17} 6$ is divided by x + 1.
- 39 Use the Factor Theorem to prove that x y is a factor of $x^n y^n$ for all positive integers n. Assuming n is even, show that x + y is also a factor of $x^n y^n$.
- 40 Assuming *n* is an odd positive integer, prove that x + y is a factor of $x^n + y^n$.

on

ion