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EXERCISES

1. Find the area under the line ¥ = 3x between x = | and x = 5 by the method
employed in the text. Ans. 36,
2. Find the area of Fxercise 1 but use the largest y-value in each subinterval in
place of the smallest y-value.
3. Find the area under the parabola y = x? from x =0 to x = 5 by using the
largest y-value in each subinterval. Ans. B
4, Find the area under thecurve y = x> from x = 1 to x = 5. Ans. B
5. Compute approximately the area under p = x? from x = 0 to x = 5 by using 10
subintervals Ax to fill out the interval (0, 53 and by using the largest y-value in
each subinterval, | : ‘
6. Compute approximately the area under the curve y = /{1 + x%) for the inter-
val 0 < x < 1. Use n = 10 and the smallest y-value in each subinterval.
Ans. 0.75.

3. The Definife integral. The method of finding areas that we examined in
Section 2 ititroduces several new concepts into the calculus, and we should
obtain a clearer understanding of them before considering whether we can
do anything more significant with the method.

There is, first, a new limit concept. Each approximation to the area
under a curve is a sum of reciangie,%. We have denoted these sums, when
the minimum y-value is used in each Ax, by

ﬁ’&,ﬁ,.%.,ﬁy“.
This set of successive sums is called an infinite sequence. More generally, an
infinite sequence is a set of numbers such that there is a first member, a
second member, and m fact a member corresponding to each positive
integer n. Thus the set is unending. What is of interest in sequences is the
number which the members of the seguence approach, that is, the limir
toward which the members tend. We dencie the number which the mem-
bers approach by the notation
lim §

Fiea GO L

If we consider any infinite sequence, we need not use the bar under-
neath, and we can write it as

SleDSB!'."S"“

n

Thus if the sequence consisis of the numbers

1 1 1
;) 2 Afg‘) » Hs 3
then §; = 1,8, =4,8; =14, .5, = 1/n ltis evident in this case that
hm §, =0

e OO
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because as n gets larger and larger, the quantity 1/# comes closer and
closer to 0. Thus if » =105 1/» =0.000,001; if »= 105 1/n =
0.000,000,001; and so on.

If the sequence consists of the numbers

[

Zs"' na'.'s

it is evident that the limit is I because the additional quantity 1/» in the
nth term approaches 0.
Not every sequence has a limit, Thus the members of the sequence

1,49,- -, n% .

become larger and larger and increase beyond bound. They do not ap-
proach a definite number, We sometimes say that the nth term becomes
infinite, but this means only that the successive terms increase and become
larger than any number that one may name.

A sequence may not have a limit or, one says, may fzail to converge
even if the ferms do not become infinite. For example, consider

i I 11 l
SR AR R AL S L £
Here the odd-numbered terms approach 0 and the even-numbered terms
approach 1. Because alf the terms do not come closer and closer to one
fixed number, the sequence does not have a limit.

It is desirable to distinguish between a sequence and a function. The
function y = x? takes on values for alfl values of x in some domain, if, for
example, we were interested in this function over the domain x = 3 (o
x =5, the possible values of x would be the whole numbers, fractions, and
irrational numbers between 3 and 5. On the other hand, if we have a
sequence whose nth term is, say, n°, then only the values of #? for n = 1,

= 2, n =3, and so on are of inter est One can regard » as a variable and
n? as a function, but only the values of »? for positive integral values of #
matter. .
The difference between a function and a sequence insofar as the
values that x can take on in the former case and » in the latter is reflected
in the corresponding limit concepts. For example,

lim x?

X-22
is the number that x? approaches as x takes on all values closer and closer
to 2. On the other hand, when one considers, for example,

1

M, T

he is interesied in the number that 1/r? approaches as n takes on larger
and larger positive integral values,
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We shall say more about sequences in connection with the work on
infinite series. At the present time some acquaintance with the notions of
infinite sequence and limit of a sequence 1s sufficient, and we may return to
the subject of the area under a curve.

EXERCISES
1. Write the first 5 terms of the sequence whose sth term is the following:
) (a) II_ . (C) n o 1
% n+2
) @ ks
Vn

2. Write the nth term of the following sequences:

(3) 3’2%92%,2%:"" {e) :
Ans, 24+ (1/n) 1-272-37 3.4

) &, 4, bk, Ans 1/20 Il”‘“"

© 24,2424 24, I

@ L=k, =4k ® L35 2 @ .

T T N Ans. 1/n!

3, Determine by inspection the limit, if there is oné,‘y of sach of the following

sequences. The symbol s, denotes the ath term of the sequence.
1 : 1

_ _ oy L
() s, m—\[ﬁ . Ans. 0, (f) 5, —(1;‘1) n‘
() s, = L. dns. 1. B =1
" p ] R+ 3n
1/n hy s, = prar Ans. None.
© 5, = — Ans. 1. "+
VTS . 2n — 1)
n— 1 (1) Sn = 2
(@) s, = (1Y =—=. Ans None. nt—1
n+1 . 1 6
(D s,=5+—- +—.
(&) s,=Vn. oo

We can generalize somewhat our method of finding the area vnder a
curve. When we discussed previousiy approximating the area under a curve
by rectangies, we decided that in each subinterval Ax we would choose the
smallest y-value or the largest y-value. With either choice the successive
sums obtained by utilizing narrower and narrower rectangles approach the
area under the curve. If, however, we should select in each subinterval any
y-value (Fig. 9-9), then the sum of the rectangular areas should likewise
approach the area under the curve. This fact is rather easy to esiablish,
Suppose that we have subdivided the interval (g, b) into equal subintervals
Ax. As before, we denote by m, the smallest y-value in the ith subinterval
and by M,, the largest y-value. Now let y; denote any y-value in the ith
subinterval. Thereby we obiain three different sequences of sums whose nth
terms are

_LS_’Emm,Ax+m2Ax+---+mnAx,
S* =y, Ax + y, Ax + - o+ y, 4x,

T =M, Ax+ MyAx + - - + M, Ax.
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Figure 9-9

From the fact that

we have that
85, < SE S,

Now, when r becomes infinite, both $, and S, approach the area under the
curve. Because S* lies between the other two, it must approach the same
limit. Hence, if we should find it convenient to choose some y-value in each
subinterval Ax other than the minimum or maximum one, we may do so,
We may take another liberty with respect to the construction of the
sequence of approximating sums. We introduced this concept by starting
with subdivisions of the interval (4, b) into equal parts of width Ax.
However, our main concern is to have the sum of the rectangles that we
form come closer, as the nomber of rectangles increases, to the area under
the curve. The way to attain this end is to make each rectangle narrower
and narrower, even though in any one subdivision the rectangles are not of
equal width. That the essential point is the narrowness of each rectangle is
easily seen. Why is each rectangie y; Ax only an approximation to a portion
of the area under the curve? An examination of Fig, 9-9 or of any of the
foregoing figures in this chapter shows that the ¥; we choose in any
subinterval Ax is not necessarily the right choice because the y-values that
correspond to the x-values in Ax vary and the y, we choose may differ from
the others, However, if Ax is small," the y-values corresponding io the
x-values in Ax cannot differ very much from the y, we choose, and the
smaller Ax is, the less these y-values can differ from y,. Hence what matters
in forming the sequence of sums of rectangles is not that the Ax’s in each
- subdivision of (4, b) be equal but that the Ax’s approach 0 in size as #, the
number of subintervals, increases. This requirement is usually stated thus:
the maximum Ax in the nth subdivision must approach 0 as # becomes
infinite. For if the maximum Ax approaches 0, so must each of the others.
If we do choose unequal subintervals to fill out the interval (a, b), we
cannot denote the width of each subinterval by Ax, In place of this we use
Axy, Axy, and so on for the successive widths (Fig. 9-10). If we let p | be the
y=value corresponding to any x-value in A%, lét y, be the y-valie corre-
sponding to any x-value in Ax,, and so on, the ath term of the sequence of
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Figure 9-10
approximating sums is
Sn=yiAxl+y2AjC2+"'+ynAxn .
and the area is given by y
’ ,\
(12) Jim S, SRR

provided that the maximum or largest Ax in 5, approacheé\ 0 as n becomes
infinite.

We see, then, that we can form many different kinds of sequences,
each of which approaches the area under a curve, or, we may say, has the
area under the curve as its limit. If we are given a particular curve and are
to find the area between that ciirve and the x-axis and between two vertical
lines at x = ¢ and x = b, we could choose any one of the sequences of
approximating sums ahd then seek

lim S,
> 00

There is another notation for-this limit which is very helpful in keeping
before us the factors that determine the area, If y = f(x) s the equation of
the curve under which the area hes, then we write for the limit '

b b '
(13 ydx  or F(x) dx.
/ 1
That is, no matter which of the approximating sequences we may use,
. b v b
Jim S, =L ydx or Jim S, ﬁj; fxy dx.

The notation in (13) must not be taken too literaliy. The symbol [ is the
elonigated § whick we have alfeady used to denote integration. It was
introduced by Leibniz to remind one that he is dealing with the limit of a
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sequence of sums. The symbols ¢ and b are the left- and right-hand end
vatues of the x-domain over which the area is being calculated. The y dx or
f{x) dx is a reminder that we took rectangles of height y, and width Ax,. If
one is dealing with the specific function ¥ = x? and wishes to indicate that -
function instead of y or f{x), he can write

. 5
(14) f x2 dx.
Clearty the notation (£3) or (14) is more informative than
A, S

The quantity (13) is called the definite integral. The use of the word integral
is not justified by what we have said so far, for integrals in the past have
arisen through antidifferentiation, The connection between definite inte-
grals and antidifferentiation remains to be discussed. The word “def-
inite,” however, is intended to convey the fact that the symbol (13} stands
for a number, whereas ordinary integrals, ot indefinite integrals as they are
often called, are functions. '

EXERCISES
1. Describe the area represented by the following:
@ [rax © [©-ax
1 1
(s f5x3 dx. (£} fs{x — 3) dx.
0 3
5 : 5
©) j; (x + 3) dx. (2) fﬂ Vx dx.

@) fjlxz do.

2. The definite integral is {(a) a sum, (b) a sequence of sums, {c) a limit of a
sequence of sums, or {d) a Limit of many sequences of sums. Whick of the
aliernative answers is most appropriate? ’

3. Given that §, = x> &x, + x> Ax, + -« + x,2 Ax,, where Ax), Axy - -+,
Ax, fill out the x-interval (0, 1) and x; is any value of x in Ax, express nlLﬂ;lo 5,

1
as a definite integral, Ans. f X2 dx.
0

4. Let 8, = y; Ax, + y, Axy + -+ + y, Ax,, where the Ax, fill out the x-interval
from x = 1 tox = 5and y, is a value of 3x?in Ax, Express niirgxo S, as a definite

integral. .
5 Let S, = 3x,2 Ax + 3x,7 Ax + - - - + 3x,2 Ax, where the Ax are equal subin-
tervals which fill out the x-intervai from x = —2 to x = 6 and x, is any value of

x in each Ax. Express nIingG S, as a definite integral.

6. Let §, = x,\/xlz —-2 Ax; + xl\/le — 2 Axy,+ - -+ x,,\/xnz -2 Ax,
where the Ax, fill out the x-interval from x = 2 to x = 10 and x, is any value of
x m Zx;, Bxpress nliﬂ;lc S, as a definite integral,



246 Cu. 9 TuE DEFINITE INTEGRAL
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Figure 9-11

4, The Evaluation of Definiie Integrais. Thus far in this chapter we have
improved on the Greek method of finding areas bounded in whole or in
part by curves by using sums of rectangles as the approximating figures and
by using the equation of the curve and algebra to calculate the limit
approached by the sequence of sums of rectangles. There is some guestion,
however, as to whether we have gained very much. The few, examples we
have studied which show how to find an area by finding;'tlle limit of a
sequence of sums also show that the process is pumbersomé;j ndeed, i the
equation of the curve should be complicated, the summation technique
might not be practical at all for the actual calculation, Is there an easy way
of evaluating definite integrals?

Consider the area DEFG {Fig. 9-1 1). We can regard this area as swept
out by the line segment QP that starts at DG and moves to the right.
Suppose that QF has ceached the position shown. The position of QP is
specified by the x-value of ¢, say xq and the area generated for this
position of OP, namely DQPG, can be denoted by A, Suppose that OF
moves to P’ Let the distance 00" be denoted by Ax. When (F moves
to O'P’, the area increases by the amount QQ' P’ P, which we denote by
AA. This increment in area is Jarger than QP X Ax and smaller than
Q'P’ x Ax. Because the ordinates between QF and (' P’ increase continu-
ously, there must be some ordinate between them, say 7, such that

A4 =y X Ax.
Then

e

A -

rranth

To obtain the instantaneous rate of change of area, that is, the rate of
change of A with respect to x at the value xp of x, we must find the limit of
AA/Ax as Ax approaches 0. As Ax approaches 0, Q' moves 10 O and Q'F
moves to QP. For any value of Ax the ordinate 7 is always between QP and
Q' P’. Hence j must aiso approach @P. The value of QF is the ordinate of
y-value corresponding to xg that 18, QP is y, Hence

‘-@.— —
dx Yo
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or, if the equation of the curve is y = x?,

dd _ o
i = %o

Because this result is true for any value of x in the interval DE, we may as
well write the derived function, namely,

dd _ o
a X7,

To find the area 4({x) itself we apply antidifferentiation: Then

3‘

(i5) Ax) ==fx2 dx = 9-;7 +C.

The problem of determining C arises. Here when QP is at DG, the
value of 4 1s 0. To be more specific, suppose that the x-value of D is 3,
Then we know that when x = 3, 4 = 0. If we substitute these values in (15),
we obtain

_ ¥
0= +C
or
C= -9,
Then
3
A(x) = »%gw -9

is the function which expresses the area from DG 1o any position of QP, the
abscissa of @ being x.

To find the area DEFG, which we originally set out to do, we have but
o note that this area is attained when QP reaches EF. Suppose that the
abscissa of E is 6. Then we merely substitute 6 for x in the expression for 4
and obtain

6
A =-3~»—9=72~9=63.

Thus we have found the area bounded at least in part by a curve through
the process of antidifferentiation or integration. To apply this process, we
must of course know the equation of the curve.

We can obtain the same result if we take the expression (15) for the
area, namely (x3/3) + C, substitute 6 for x, then substitute 3 for x, and
subiract the second result from the first. Thus ‘

3 3
%+c-(%+c)=@

The constant of integration is eliminated in the process.
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This area, which we obtained by antidifferentiation, is precisely the
area we have already indicated by the symbol

(16) f °32 dx.
3

Thus the definite integral (16) can be evaluated by antidifferentiation and

_ the substitution of the end values 6 and 3 as indicated just above.

The result—that the definite integrai, which is a limit of sequences of
sums of rectangles, is evaluated essentially by antidifferentiation—is funda-
mental. 1t is, in fact, called the fundamental theorem of the calewlus. We:
signalize it by stating it separately as a theorem:

b b
The definite integral f v dx or f F(x)dx, which is a limit of sequences of
P .

a
sums of rectangles, is evaluated by finding the indefinite integral of the
function y or f(x) and by subtracting the result of substituting o in this
integral from the result of substituting b in this integral. o
In symbols we may state the fyndamental theorem thus: [“

't

an : fbf(x)dx= F(x)|} = F(b) ~ F(a).

In this symbolism F(x) is any antiderivative of f(x}: the symbol F(x)
denotes that we intend to substituie b in F(x), substitute @ n F (x) and
subtract the second result from the first; the symbols F {b) — F{a) indicate
just what we get by carrying out what ¥ (x)E calls for.

We have stated a theorem but what have we done about its proof? We

, gave an argument based on the geometry of Fig. 9-11. However, the

function represented geometrically there does not have the behavior of all
functions. Hence the argument is incomplete. However, let us use this
evidence as our “proof.” It is intuitively sound. We shall examine a rigorous
proof at a later time.

The definite integral, or the integral as the limit of sequences of sums,
is a concept independent of the derivative, and it has been customary in the
literature to think of the calculus as consisting of two parts: the differential
calculus, concerned with differentiation and antidifferentiation, and the
integral calculus, concerned with the definite integral and its ramifications.
However, the fundamental theorem shows us that there is only one calcu-
lus. Nevertheless the definite integral is indeed something new and will
prove to be a more important concept for tackling problems.

Let us consider an example of how the fundamental theorem is used.

Find the area (Fig. 9-12) between the curve y = x2 + x + 1, the x-axis, and
the ordinates at x = 2 and x = 4.
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Figure 912

This area is represented by the definite integral
4
A =f (x2+ x+ Ddr.
2

According to the fundamental theorem, we may evaluate the area by first
finding an indefinite integral of

yo=xt+ox o+ L
One indefinite integral is
3 2
=% L X .,
F (x) =3 + 5 X.
We ignore the constant of integration because this will drop out in the next
step. The fundamental theorem tells us next that

= Flx)p = % 4 X
A = F(x)}|% 7t +x2
_E L8, (P, 2
=t 3 +4 (3+2+2)
_ %0
3

EXERCISES

1. Compute the following by using the fundamentai theorem.

3 1
(2) j; x* dx. Ans. B, (b) -fo ydx where y = x*.  Ans. 1,
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© flz ;15 ax. (8) fis (3x2 — 2x + S)dx,
(d) fz x? dx. (h) f: Vir a1 dx.

-3
{e) f5 3x® dx. o f: (5% — xVdx.

8

() ©VEx dx.
[+]

. Find the area bounded by the curve y = x?, the x-axis, and the following:

(a) The ordinates at x =2 and (b) The ordinates at x =4 and
x = 6, Ans, 694, x =8,

. By the method of the calculus find the area bounded by the straight line y = X,
the x-axis, and the ordinates at x = 4 and x = 6. Check your result by using
plane geometry. Ans, 10

. Find the area bounded by the curve y = 9x, the x-axis, and the ordinates at

x=3and x = 6.

. Find the area bounded by the curve y = x'/%, the x-axis, and the ordinates at
x=2and x =8 T Ans. 12'?»%\3/5.

. Pind the area bounded by the curve y = x?, the x-axis, and the Q_r;dinate at
x =3 A

. Pind the area between the curvey = Vx + 1, the x-axis, and the ordinates at
‘x=1and x =5 Ans. 6P~ B/,

. Given that S, = x,% Ax; + x0 Axy + - -+ + x,.° Ax,, where Ax, Axs,

16.

11,

12.

... Ax, fill out the interval (0, 1) and %, is a value of x in Ax, show that,
provided the maximum Ax; of any subdivision of (0, 1) approaches 0 as
becomes infinite, lim S, = 1.
=0 -
Suggestion: Express the limit of S, as a definite integra! and then use
the fundamental theorem.

. Let 8, =y, Ax, + y, Axy + -+, bx,, where the Ax; fili out the x-

interval from x = 1 to x =5 and y, is a value of y = 3x% in Ax,. If the
maximum Ax, approaches 0 as n becomes infinite, evaluate ’liq_lc S,
(£ ]

Ans. 124,
Let §, = 3%, Ax, + 3x,? Axy + - - - + 3x7 Ax,, where the Ax; fill out the
x-interval from x = —2 to x = 6 and x, is any value of x in Ax, Evaluate

Rlincw;° S, with the understanding that the maximum Ax, approaches 0 as »

becomes infinite,

Let §, = 2x,2 Ax + 2x;2 Ax + + -+ +2x,.? Ax, where the Ax are equal subin-
tervals that fill out the x-interval from x = 3 to x = 6 and x; is a vaive of x in
the ith subinterval Ax. If Ax = (6 — 3)/n, evaluate ,,l.l’fég S, Ans, 126,

Let S, = x\? — 2 Axy+ xaYx? =2 Axy 4 oo+ xYx2 -2 Ax,
where the Ax, fill out the x-interval from x = 2 to x = 10 and x, is any value of

x in Ax, Assuming that the maximum Ax; approaches 0 as n becomes infinite,
evazluate lim 5,
=00
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¥

o 1 ax 4
T x
L
"
y= =3x
Figure 913

§. Areas Below the x-Axis, The areas we have considered so far were
situated above the x-axis. Let us now consider the area illustrated in Figure
8-13, that is, the area between the x-axis, y = ~3x, x = 1, and x = 4, Were
we to approach this area by considering first a sequence of sums of
rectangles, the nth term of which is

S, =3 Ax + vy, Ax+ - + oy, Ax,

everything we said previously about such sequences would hold except that
the y, would be negative. Hence Jim 8, would be a negative number,

As for the fundamental theorem, the argument we gave above as to
the justification of the theorem applies here too. The fact that the p-values
are negative does not in any way affect the argument because negative
numbers are as respectable and as legitimate as positive numbers. In the
present exampie

4
lim S, mf ~ 3x dx.
iy 0D E

According o the fundamental theorem

4 .
j; __3xdx= —%xz{?m m%-42~+(wg' EZ)_—“ _22%-

What significance should we attach to the fact that the area is
negative? The area itself as a purely geometrical guantity or physical
guantity is positive. The fact that our method of representing curves by
equations in which y or x or both can take on negative values leads, in the
case where the area lies below the x-axis, to a negative area may be
unfortunate but if we recognize this fact and take it info account where
relevant, it does not cause any difficulty.




252 Cu. 9 Tuas DEFINITE INTEGRAL

y=3x

-2 0

Figure 9-14

To see how we can handle this peculiar fact that areas lying below the
x-axis turn out to be negative let us consider another example, Suppose we
now seek the area (Fig. 9-14) bounded by the line y = 3x, the x:axis, and
the ordinates at x = —2 and x = 5. If we evaluate

¢
[

(18) f5 3x dx
-2

the result will not be the correct area because the integral is negative in part
of the domain from —2 to 5 and positive in the other part. However, since
the integral is a limit of a sequence of sums of rectangies we can consider
the rectangles that “fill out” the area from ~2 to 0 and the rectangles that
fill out the area from 0 to 5 and consider the integral (18) as the sum of two
integrals thus:

(19) f:3xdx2f03xdx+fs3xdx.-
-2 -2 0

iIf we now apply the fundamental theorem to all of these integrals we obtain

By = 3, + 1%

or
8o g+ B
Z P

The value of the definite integral on the left side of (19) is £, However, if
we are interested in the geomerrical area between y = 3x, the x-axis,
x = —32, and x = 5 then, knowing that the integral gives a negative area
when the area lies below the x-axis, we ignore the minus sign in the —6 and
take the entire geometrical area to be 6 + % or £,



6. AREAS BETWEEN CURVES 233
EXERCISES

1. Find the geometrical area between y = — 3x, the x-axis, x = 0, and x = 5.

4
2. (a) Evaluate f Ax dx.
-3

(b) Find the geometrical area between y = 3x, the x-axis, x = ~3, and x = 4.
3
3. (a) Evaluate f ~ x% dx.
-3
(b) Find the geometrical area between y = ~ x?, the x-axis, x = ~3, and
x =3,
4. Find the geometrical area between y = —Vi1x + |, the x-axis, x = 1, and
x =5
5. Find the geometrical area between the curve of y = (x ~ 3} x — 2Hx + 1), the
x-axis, x = 0, and x = 4. Ans. 2,

6. Areas Between Curves. Our use of the definite integral and the funda-
mental theorem fo find areas has been confined thus far to areas lying
between a curve and the x-axis. Actually our new tools enable us to solve
more complicated area probiems.

Suppose that we wished to find the area between the curves y = 5x,
¥ = x*and the ordinates at x = 1 and x = 4 (Fig. 9-15). Clearly this area is
the difference of two areas, the area under y = 5x and the area under
y = x* both taken between x = 1 and x = 4, Then since each area is given
by a definite integral the area we seek is given by ‘

(20) [Fsx ax mfx-’» dx.
H

We can now use the fundamental theorem to evaluate each integral. Thus
(20) vields

3
244 X — =
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However, in using the fundamental theorem we first find the indefinite
integrals of 5x and of x?, that is, we first find

f‘Sx dx and fo dx.

Since (20) calls for the subtraction of the two definite integrals we can use
the fact (Chap. 6, Sect. 5) that the difference of the two indefinite integrals
is the indefinite integral of the difference of the two functions, that is,

(22) fﬁx dx —fxz'dx ﬁf(Sx - xHdx

and since we then stbstitute the end values 1 and 4 in each of the separate
integrals as in (21} we may as well substitute the end values | and 4 in the
single integral on the right side of (22). Thus the area we seek is given by

3 4

4 2
I e A Mk e LR 2

The point we have just made, stated in general terms, is that if » and v are
functions of x then *

5 b & I
(23) [rudc= [ Tvde= [ (ux v)dx. ‘

a a a ot
Sometimes the calculation of the right-hand integral in (23) is simpler
because terms in # and © may combine or offset each other. Whether or not
one uses (23) the main point of this section is that we can find the area

between curves by means of the definite integral.
Let us consider another example.

Find the area between the curves y = 3x — x* and x — 3.

Qur first task is to recognize the area we wish to find. This is shown in Fig.
9-16, We must first find the abscissas of points 4 and B. This is done by

Figure 9-16
¥
y=3x~-x2
C .
y=x=3
0 B
X
D
A
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solving simultaneously

= 3x — x?
= x
Then
3x — x? = x—3
o1
x2=2x—-3=0
Then x = —1 and x = 3. The value —1 15 the abscissa of 4 and the value 3

is the abscissa of B. The respective ordinates are —4 and 0.

Now let us consider the area beiween (2 and B. Part of this area lies
below the x-axis. We could find the area OBC and the area ODB and add
the pumerical values, However, if we form

3.
f [(3x — x%) — (x — 3)]dx
0 4
then because we have subtracted x — 3 we have changed the sign of the
area ODB and the entire integral will give the correct geomeétrical area .

OCBD. In the region 40D, the y-values of y = 3x — x? are negative but
the y-values of y = x — 3 are still more negative. Then

3x — x* — (x ~ 3)

will give precisely the vertical lengths between 40 and AD and with the
proper sign, Hence

0
Area AOD =f [(Bx = x%) = (x — 3)]dx.
-1
Then as in (19) the entire area AGCBD is given by
3 ) 3
[ [Bx =2~ (x - 3)]dx=f (3 + 2x — x)dx
-1 -1

L
=3x+x2—-’§—| =103

EXERCISES

4
1. Evaluatef (x? + xHdx. Ans. 843,
1

2, Express the area under the curve of y = 9 — x* between » = Gand x = [ as a2
definite integral and then calculate it. Ans, 8%,
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3. Express the area between y = x> + 9,y = x% x =1, and x = 5 as a definite

integral and then evaluate it. Ans. 1502,

4, Find the area between the curves y = 3x% and y = 5x? and between the

ordinates at x = 2 and x = 4, Ans, 374,

5, Find the area between the curve y = 1/x? and the x-axis and between x = 1
and x = 3,

. Find the area between the curve y = x7 and the liney = 2x. Ans. 1,

. Find the area between the curves y = x? and y = V5x .

6
7
8. Find the area between the curves y = 9 — x?andy = x% Ans. 18VZ
9. Find the area between the curve y = x* and the straight line y = 8x ~ 4,

10, Find the area between the parabolas y = 2x% + { and y = x% + 5.

. Ans. 10%.

11. Find the area between y? = 16x and y? = x°. Ans. 84,
12, Calculate the physical atea in the region bounded by the curve y = x* — 8, the
x-axis, and the vertical lines x = 1 and x = 3. Ans. 124,

13. Prove with the aid of the fundamental theorem that

fbcy dx= cfby dx,

] B b b
14, Show by using a counterexample that f udx - f v dx % f uo dx where u
a a a

and v are functions of x.

‘ 8 i
15. By appealing to geometric evidence show thatf x"dx +f xVEdx = Lforn
. ‘ i [

a positive integer.
16. Show that the area under p = x“ @ % ~1, and between x = ¢ and x = d
equals ! /a times the area bounded by ¥ = x, the y-axis, y = ¢“. and y = 4"

7. Some Additional Properties of the Definite Infegral. There are a few
simple properties of the definite integral that are frequently used. The
definition of the definite integral

24) I "y dx
a

assumes that the upper end value b is larger than the lower end value a.
There is, however, no objecticn to considering the definite integral

(25) f& ) dx

where, with a < b, the upper end value is smaller than the lower one. We
can, in fact, take over everything that applied to (24) with one exception.
Previously, when we used equal subintervals in the interval (a, b), we took
Ax to be (b — a}/n. For the sake of consistency we agree in the case of (25)
that

a = h
fT .

Ax =
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When a < b—the case that we are now discussing—Ax is negative.
Moreover, even if we choose unequal subinfervals in the interval {a, b), we
take them to be negative. The choice of y-vaiues in each subinterval can be
the same for both {24) and (25). Hence the effect of our choice of sign for
Ax is to make each S, that we form for (25) the negative of the correspond-
ing 8, for (24). However, if the sequence

o3 7 2l
2740 8" ’ no
approaches 1, the sequence
R B S ool
20 40 8" ’ n

approaches — 1. Hence

(26) fbayd”z “—fabydx.

We can consider the same fact from the standpoint of antidifferentia-
tion. The left-hand integral calis for finding the indefinite iniegral of the '
function represented by y and then subtracting the result of substituting b
in this indefinite integral from the result of substituting a. The right-hand
integral calis for the same indefinité integral and then subtracting the resuit
of substituting ¢ from the result of substituting 5. Then the fina! numbers
will be the negatives of each other. '

There is one more fact about the definite integral which is occasionally

b
useful. Instead of considering the definite integral f Ji{xydx we could

consider

f:f(x)dx

wherein the upper end value x is variable; this is still called the definite -
integral. Of course now the value of the definite integral depends on the
value of x; thai is, it is a function of x. One can therefore ask, what is

@7 A f F(x)dx?

The notation just used, although perhaps understandable, is not quite
satisfactory. The symbol x is used in two different senses. In Flx), x stands
for a variable which runs through some interval of values from @ on. The
symbol x at the upper end of the integral sign stands for the end of the
interval of integration. To remove the ambiguity it is better to write

(28) | de | St
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wherein # runs through the values from a to x. Thus if f(x) is x2 f(u)is 2
and the integral in (28) is taken over the interval from a to x, Our question
now is, what is the value of (28)?

The answer is readily obtained. By the fundamental theorem

[ fldu = F(x) - Fla)

where F(x) is an antiderivative of f(x).* Then
X
L [ fwpau = £(x)

because the derivative of F(x) is f(x) and F{a) is a constant. This resuit is
often labeled the corollary to the fundamental theorem. Given the definite

integral f xf {(1)du, wherein the upper end value x is variable, then

o

29) L fo(u)dum ).

This corollary is occasionally useful.

Our treatment of the definite integral has been motivated by the
problem of finding areas bounded by curves. We shall see later that the
definite integral has many applications.

EXERCISES

b
1. Evaluate Ed; f x* dx when a and b are constants.
[

Z. Evaiuate % f g du by using the corollary to the fundamental theorem and
a

by actually evaluating the integral.

3. I g(x) = fo V¥ ¥ 72 du, what is d%/dx®?

xl
4 If g(x) = fo F(wydu, what is dg /dx?

Suggestion: Let x* = v and use the chain rule,

5. Criticize the following argument which “proves” that every triangle is isosceles.
Consider triangle ABC {Fig. 9-17) and let 4D be the altitude from A to BC.
Now let PQ be any paraliel to BC and PR and QS paraliel to 4D. Then
PR = Q8. By drawing paraliels such as PQ we can cover triangle B4D by lines
such as PR. Similarly, we can cover triangle C4D by lines such as QS. Hence
triangle BAD equals CAD and triangie ABC is isosceles,

* One could alsc say, where F{u) is an antiderivative of f(x),
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Figure 9-17

" 8. Numerical Methods for Evalualing Definite Integrals. By virtue of the
fundamental theorem of the calculus we know that we can evaluate the
definite integral

(30) [ xya

by finding an antiderivative of f{x), say F(x), and then calculating F(b) —
F(a). For the functions we have studied thus far the problem of finding an
antiderivative of f(x) is readily solved and we can calculate the definite
integral. However, we intend to apply the concept of the definite integral to
many more complicated functions and even though we shall find that there
are many more techniques of finding antiderivatives (Chap. 14), it is a sad
fact that we cannot find antiderivatives for ali of the f(x) that cceur in
mathematical and physical problems even when f(x) is an elementary
function. For example, one cannot evaluate

fw\/l T cosix dx,
0

which gives the length of one arch of the sine curve (Fig. 10-1) by finding
an antiderivative of the integrand. Moreover, in practical work some
functions are known only as graphs or as statistical tables and even though
it may be possible to find a formula to represent such functions the formula
will surely be an approximate one and therefore, even if one can antidif-
ferentiate the formula, the answer will still be approximate.

In both situations, that is, where one cannot find an antiderivative or
where the antiderivative is an approximation, it is useful o be able to
evaluate the definite integral numerically using only numerical values of
F(x).

One method of numerical evaluation is calied the trapezoidal rule and
this is readily derived. We know from our work on the definite integral

b
{Sect. 3) that an approximate value of f f(x)dx is given by

So= vy dxy + oy dxy + -0+ y,_ Ax,

where the subintervals Ax,, Axy, . . ., Ax, fill out theinterval-{a, b} and y, is
any value of y = f(x)in Ax, Let us use equal subintervals and call each 4.
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{x2, y2)
(x5 yl%‘ i {%n ¥n}
(%0, o) :

yg ¥n—-1

Yo

Figure 5-18

Then if we choose the v, to be the left-hand y-values in each subinterval A
(Fig. 9-18), '
S,=yh v yihk by ok
is an approximation to the definite integral (30). It is also true that
S,=yh+yh+ o +yh
where the y;, are the right-hand y-values in each subinterval A, is an

approximation to the definite mtegral (30). Hence the average of the two
should be a better approximation. This average is

@B S, =y bt iy b+ D TR

Bach of these terms is the area of a trapezoid formed by, for example, vy, ¥\,
k and the chord joining (xg, yo) and (x,, y,), because the area of a trapezoid
is one-half the altitude times the-sum of the bases. Hence the approxima-
tion (31) is called the trapezoidal rule. We can rewrite (31) in the more
convenient form

b
@2) [ f0des B iyt et b 1]

wherein the symbol = means approximately. Generally, the larger » is, the
better the approximation. :

Approximate the area under the curvey = 1 /(1 + x¥fromx =0twx =2
(Fig. 9-19).
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Y

i 3 2
2

(S

Figure 9-19

Let us divide up the interval from x = 0 to x = 2 into 4 subintervals. Then
Xpg=0, %, =4, x, = 1, x, =3, and x, = 2, while /1 = 1.
By actual substitution in the function y = 1/(1 + x* we find that

Yo=Flx) = f(0) =1; yi=f(x)=f(})=9%
yo=Jlxg) =f(1) =5 yy=f(x;) = f(3) =.165;
Ya = Slxg) = f(2) =.059.
Substitution in (32) vields
%H«(l.) +.94 +.5 +.165 + 1(.059)] = 1.067.

EXERCISES

5
1. Evaluate f x* dx approximately by using the trapezoidal rule and 4 subinter-
1

vals. Then determine the accuracy of the approximation by using the fundamen-
tal theorem.

dx

2. Approximate f : by using five subintervals, Ans. 0.463.
o 14+ x°
. p3
3. Approximate f V1 + %% dx using six subintervals. Ans, 7.39,
0

4. Suppose & function y = f(x) is known to us only through the following table:
xia]l;2|3I4}5|6j7|8|9]se
y | 172|160 | 144 {124 | 106 | 0.92 [ 0.80 | 0.70 | 0.63 | 0.56 | 0.50

] 10
Approximate f Flxydx.
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The trapezoidal rule approximates a cusve by a set of line segments or
chords and in effect uses the formula for the area of a trapezoid. One would
expect to do better by approximating the given curve by another curve
which is readily integrated or whose values are readily computed, The
simplest approximating curve which usually improves on the trapezoidal
rule and which is easy to handie is a parabola of the form y = ax® + bx +
¢. Such a parabola is determined by three points. Hence we divide up the

b
interval (g, b) of the definite integral f f(x)dx into n equal subintervals.
4

Corresponding to the endpoints Xg X Xp -« o0 Xy of these subintervals
there are the points Pg, Py, ..., P, of the given curve (Fig. 9-20). We
approximate the curve through Po, £y and P, by an‘arc of a parabola; then
do the same for P,, Py, and P,, for P, Ps, and P, and so on. Since each
parabolic arc covers two subintervals, we see that the number of these must
be even.

Now let us investigate what the area under a typical parabolic arc is.
The equation of the parabola is y = ax? + bx + ¢ and it is to be de-
termined by three points on the curve, say (X, Vit (%, p) and
(X010 Vis1). We can come closer to our ultimate goal if we write the
equation of the parabola as

(33) y = a(x = x)+ b(x — x) + 3
This form insures that the parabola goes through (x;y,). Now since we
choose equal subintervais of the width h, say, then the area we want is

|

x'”‘[a(x - x)+ b(x = x) + yi]dx

X, —#
a(x - %) b(x~ x) x
= + + X
3 2 ok
3 ¥
2
(34) - h(zyi + 2—‘_2?«»»)
Figure 9-20

A

Parabolic arc
i
Yiml ¥i41

¢ ®i—1 % Xi gy
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R R

To make- the parabola pass through (x;_,, ¥,..,) we must have from
(33), since x'— "%/ must be — 4,

Yioy = ah® ~ Bh + y;

-and to make the parabola pass through {x,,,, v, ) we must have

Yiso = ah® + bh + y,.
If we now add these last two equations and rearrange terms we gat
2aht =y, ~ 2y, + Yitp

Hence by (34) the area under the parabola through (x,_,, ¥, ), {x, v, and
(JCH_;,}’H_]) 18

(35 %l'(yf—l + 4y, + i)

We planned to divide the interval (a, b} inte n subintervals, with n
even, and to approximate each arc of the curve through P, P, and P,, P,
Py and P,, and so on by an arc of a parabola. The areas under these
parabolic arcs are given by (35) by letting i = 1,3, 5,. .., n — 1. Then the
approximation to the desired integral is given by adding these successive
areas so that

b
f fix)dx= % [ye+ ¥y T2y v+ - +y,0)
(38) '
A et F o]

This resuit is known as Simpson’s rule.

Let us calculate f dx and fet us choose 10 subintervals. Then # = 0,1 and

Yo=g 00 =1/L1L y; = 1/12,.. .y, = 1. If we substitute these values
in (36) we find that the definite 1ntegra1 1s approximately 0.693130, We
shall find later that the value of this integral is the logarithm of 2 to a base e
which we have yet to discuss. A more accurate value of the integral
compitted by other means is 0.693147,

EXERCISES

1
1. Approximate f I a_:cx using 4 subintervals, Ans. 0.693,
0

5
2. Evaluate f x¥dx by using Simpson’s rule and 4 subintervals. Compare the
i

- result with the exact value obtained by using the fundsmental tHeotem, Would
you expect the two values to agree?
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: 3
3. Approximate f Vi + x° dx by using Simpson’s rule and 6 subintervals.
: 0

4. Given the following data on a function y = F{x)

x b0 |t ]2 13 | 4 | 5 | 6
y | 2 | 3% | 9 | 3 | a2 | 4 | 38
6
calculate approximately f f{x)dx: Ans. 37.33,
. o
5, Evaluate [‘7 n dx 5 approximately by using Simpson’s rule and 4 subintervals.
70 + x

APPENDIX
THE SUM OF THE SQUARES
OF THE FIRST n INTEGERS

We wish to prove that

3 2

S S PID SR S
S=1"+2+3+ +n Tty vy
Proof: One method of proof depends on a trick. We have the identity

nd— (n=1P=3n"=3n+ L

By replacing n by # — 1, we have
(n— 1P~ (n=2P=3n—-1F=3xn~1+1
Similarly,
n=2=(n=3P=3n-2-3n~-2+1
PP =3-3-3-3+1.

2P =32 -3\2+1
PP =3-12-31+1

If we now add the left sides and then the right sides, we have
=3P R4+ ) -3l 24+

=38 =35 (n+ 1)+ n

If we sclve this equation for §, we obtain the result above:
The proof can also be made by mathematical induction.




CHAPTER

TEN

THE |
TRIGONOMETRIC
FUNCTIONS

1. Introduction. We have learned the basic concepts of the calculus,
differentiation, antidifferentiation, and the definite integral. We have also
seen that these three concepts are intimately related, However, we have
applied these concepts only to simple functions, that is, polynomials such as
x% —~ x + 5, rational functions, which ‘are quotients of polynomials, and to
simple expressions involving fractional powers of x or algebraic functions
of x as, for example, V(x + 5)/ (x* + x) . Because we have been limited
to just these few types of functions we have been limited in the applications
we could make. To extend the power of the caléulus we must learn how to
. handie new types of functions.

‘Our next concern will be the class known as trigonometric functions.
These are important because they represent periodic phenomena. The
motion of a bob on a spring and the motion of a pendulum are obvious
periodic phenomena, but many others, such as sound waves, alternating
electric current; and radio waves, are also periodic, although this fact is not
at once apparent. However, even if one recognizes that a phenomenon is
periodic and that trigonometric functions should be involved, he must sll
answer the question of precisely which function represents that phenome-
non and how one can extract physical information from the function. After
presenting a few technical facts about the trigonometric functions we shall
consider a few of these applications. '

2. The Sinusoidal Functions. The basic periodic function is y = sin x. To
refresh our minds about this function, let us look at the graph in Fig, 10-1.
As the function arises in trigonometry, x stands for the size of an angle,
which is measured in degrees or in radians. Both units are shown in the
figure. In the calculus the radian measure is preferred for a reason that will
be evident shortly, ‘

There is a common misconception about the function y = sin x which

stems from the fact the x-values originate as a measure of angles. The
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T
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/é\%/u 180’1\/325“ %// ¥
_1;L
1

!

Figure 10-1

function © = 32/ originally represented and still represents the velocity of a -
body which is dropped and falis (in a vacuum) under the pull of the earth’s
gravity. The values of £ in this application are time values and the v-values
are, of course, velocity values. However, as a mathematical function the
values of © and ¢ are pure numbers and pot time and velocity values. All
one can say mathematically is that when 1 = 1, v = 32. Indeed, the same
mathematical function might be used in a totally different physical context
where ¢ might represent any number of oxen and v the combined lengths of
their tails. The same point applies to y = sin x. As a mathematical function
x and y represent pure numbers, and the fact that x originally represented
the sizes of angles is irrelevant, If we choose 10 tet the values of x represent,
for example, values of time and the values of y to represent distarce, we are
entirely free to do so, and we shall do so when this interpretation fits the
physical phenomenon under study. In other words, once we have some way
of determining the y-value which belongs to a given x-value, we have a
mathematical function that can be applied te any physical situation in
which the function may be useful. . '

To obtain the value of y for a given value of x we do interpret x as the
aumber of radians in an angle and then look up our trigonometric tables
tor the sine of the angle of that many radians or, if necessary, first convert
the radians to degrees. This reversion to afgles and sines of angles is
uwtilized only because the values of ¥ happen to be recorded in trigonometric
tables.

The function y = sin x is periodic, that is, the v-values repeat in
successive intervals the values that y takes on in the interval 0 to 2w. The
interval 2 is called the period, a term which, incidentally, comes from the
physical situation in which x represents time. (In applications in which x
represents distance, the interval 27 is called the wavelength.) As Fig. 10-]
shows, the maximum y-value is 1, and this number is called the amplitude o
the function. :

The great usefulness of the trigonometric functions derives from the
Fact that for each of the six fundamental functions, y = sifi x, ¥ = COS X, )
= fan x, ¥y = cof X, ¥ = 8€C X, and y = csc x, there is an infinitude ©
variations. We shall discuss these in connection with the function y = sin x
but the same remarks apply to the other five fenctions.
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2} y=2sinx
1h y=sinx
- o g 2 3 "
- 180° 180° 360° 540°
o 1
fom 2
Figure 10-2

A common variation of y = sin x is
1) y = 2sin x.

It is easy to see in this case how the second function differs from the first.
For each value of x, 2 sin x is twice sin x. Figure 10-2 shows the effect of
the factor 2. The period of ¥ = 2 sin x is still Iz, but the amplitude is 2. Of
course, any number can occur in place of the 2, and so we already have the
infinite number of functions y = a sin x.

Another equally common variation of y = sin x is exemplified by

(2) y = sin 2x.

The effect of the 2 in this function is different from that in y = 2 sin x. In
the case of (2), given any value of x, say = /4, we first multiply by 2,
obtaining = /2, and then find sin = /2, which is of course 1. That is, for
Y = sin 2x when x = 7/4,y = 1. We can readily see that as x takes on the
values from O to 7, 2x takes on the values from 0 to 27 and sin 2x runs
through the complete set of y-values that occur in the interval from 0 to 2o
of y = sin x, That is, y increases from 0 to 1, then decreases to 0, decreases
still further to 1, and then increases to 0. This range of y-values is called a
cycle. The behavior of y = sin 2x is represented in Fig. 10-3. We see that
the amplitude is 1 but the period is «, It is worth remembering that the

Figure 10-3

FE R ¥ = sin 2%
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period can be obtained by dividing the normal period 2 by the coefficient
of x. It is perhaps unnecessary to add that in place of the 2 in y = sin 2x,
any number can occur, so that-there is another infinity of sinusoida
functions of the form y = sin bx.

Another kind of variation on y = sin x is that which combines the two
types we have discussed. It is generally represented by the formula y = ¢
sin bx. A few other variations are suggesied in the exercises.

EXERCISES
i. Sketch on the same axes y = }sin x and
(a) = sin 3x. @) y=sinx+ T,
(b) » =3 sinx. ‘ 5
¢y y=3sin2x &) y=sin(x ~ 1)
@ y=2smdx (h) y = —2sin3x,
() y= szn(x + 5 )

2, Sketch y = x + sin x. .

Suggestion: Sketch y = x and y = sin x on the same axes. Then at a
number of values of x add the ordinates of the two curves. If one ordmate is
positive and the other negative, you must of course add the signed values,

3. Sketch y = x sin x.
4, Sketchy = 3sin2(x ~ 1) + 4.

Suggestion; Sketch in order y = sinx, y = sin 2x, p = sin 2(x — 1}, p
= 3sin 2(x — 1), and y = 3sin 2{x — I) + 4.

5, Sketch y = x% + sin x.

3. Some Preliminaries on Limits. In the calculus we are interested in what
we can do with the derived functions and integrals of the trigonometric
functions. To find the derivative of y = sin x, we use the method of
increments. In the course of this work we must determine certain limits and
so we shall dispose of these now. The first is

. sin x
lim .
X ) X

3)
The determination of this limit is more difficuit than that of, say,

oxt—4
@ i 224

Here we can divide numerator and denominator by x — 2, which is
certainly correct when x = 2; having obtained x + 2, we can see that the
function approaches 4 as x approaches 2. For (3), however, where the same
difficulty arises as in (4), namely, both numerator and denominator ap-
proach {, i is not possible {o divide numerator and denominator by some
quantity in order to determine the Hmit readily. Moreover, substituting 0
for x in {3), which sometimes gives the same result as finding the limit as x
approaches 0, does not help because in the present case it gives 0/0,
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Before trying to determine the limit of a function, it is wise to convince
oneself that it does indeed have one. To obtain some indication of whether
thére may be a limit and what number to expect, we choose values of x and
calculate the values of the fraction (3). Thereby we obtain the following
table:

X 0.5 0.3 0.2 0.1 0.05 0.01
sin x| 0479 0.2955 0.1987 0.0998 0.049979 0.00999998

m__Sif;x 0.95% 0985 09933 09983 099958  0.999998

It seems quite clear that the limit in question is 1.

We shall prove that this is so. We may regard x as the size of a positive
central angle in a circle (Fig. 10-4) of radius 1 and center O. Let 4D be the
arc of the circle intercepted by the angle. At 4 we drop the perpendicular
AB to the side OD of the angle and at D we erect the perpendicular to the
side OD. This perpendicular meets 04 in some point which we denote by
E' .

We see from the-figure that

(5} area OBA < area of sector QDA < area ODE.
But
area OBA = OB+ B4 = 1 cos x sin x.
Further, the area ODA of the sector of the circle is that part of the entire

area of the circle which the central angle x is of 2. That is,

area ODA = %r_ (1Y =

b3 e

Finally,

area ODE = LED- 0D = | fan x =

b —
[e N T
ols
&
£

Figure 16-4
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 With these values of the individual areas the inequality (5) reads

. X I sinx
Leosxsinx <z <5 ——,
2 2 72 cosx

If we divide the inequality by the positive quantity (siz x}/2 we obtain

1
- < .
sin x ~ COS X

(8) cos x <

We recall from the study of trigonometry (see Fig. 10-3) that as x ap-
proaches 0, cos x approaches 1, However, we see from (6) that as x
approaches 0, x/sin x always lies between two guantities, cos x which.
approaches 1 and 1/cos x which must also approach 1 because cos x does.
Hence

lim -

s—0 SiN X
Because this limit 1s 1, it is also true that the reciprocal approaches 1, that
is,

7 Lo Sinx 1
@ liy 5

We have considered the limit of {sin x}/x as x approaches 0 through
positive vajues. However, when x is negative, we may use the fact that

® sin x _ sin{ — x)
x -x
because sin (—x) = —sin x, Moreover, .if x is negative, - x is positive.

Because the right side of (8) deals with a positive variabie and the fraciion
approaches 1 as x approaches 0, the left side of (8) also approaches I.

We should note that the convenience of radian measure is uiilized in
the proof of (7). Had we used x-values which are associated with the degree
measure of angles, our statement about the area of sector OD4 would have
had to be modified to read

- K 2
area ODA = 550 7{1)",

and as a consequence the final result would have been

fim 180 SIRX _ |
x—y T X

When the values of x are associated with the radian measure of angles, we
dispense with the factor 180/w. Of course, nothing important in the
caleulus would really be affected if we did have to carry this factor.

There is one more limit that we shall utilize shortly, namely,

» oo L .cosx
E) i =

x-all
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The difficulty in evaluating this limit is the usual one—both numerator and
denominator approach 0. However, the limit is readily evaluated. We utilize
the trigonometric identity

X _of]1 = cosx
i s1n§-~v——~—-2—-«-—

so that

1~c0sxm23inz%.

If we substitute this value in (9), we obtain

2 sin? &
. 2
lim

X0 X

It is correct algebraically to write this last expression as

X
sin =
2

I
lim sin &
x—{ 2

2

If, for convenience, we regard x /2 as ¥, we see that we must determine the
limit as y approaches 0 of a product one factor of which is sin y and the
other (sin y}/y, We know that the limit of a product of two functions is the
product of the limits. However, as y approaches 0, {sin y) /v approaches 1
and sin y approaches 0. Hence the product of the limits is 0. Thus

(11) lim L CO8X g

X}

EXERCISES

1. Show that Iixré i—:——;—os-i = 0 by multiplying numerator and denominator by
. X -y

I + ¢os x and then making any appropriate steps,
2. Evaluate the following limits:

., sin2x . 1 — cosx
=== .2, ——
@ fm = A 2D
. sin ax . fanx
(b) lim =~ (e lim ——, Ans, 1.
X X x~s0 X
Ii sin Ax . Ans. 1.
© axso  Bx w1

4. Ditferentlation of the Trigonomelric Functions. To differentiate v
= sin x we apply the method of increments. Let x; be the value of x at
which we desire the derivative. Then

Yo = Sin Xq



272 Oy, 10 TEE TRIGONOMETRIC FUNCTIONS
If x changes to the value x, + Ax, then
o+ Ay = sin(x, + Ax)

and

Ay sin(xg + Ax} — sin X
Ax Ax '

We cannot obtain the limit of the right side as Ax approaches 0 by merely
inspecting the expression; hence we shall try to transform i on the chance
that some other form may be more perspicuous. The presence of sin(x, +
Ax) suggests that we try to use the identity ‘

sin{4 + B) = sin A cos B + cos 4 sin B.

Then

Ay sinxgcos Ax + cos xg sin Ax — §in X
Ax Ax '

Again, a direct evafuation of the limit of the fraction does not seem
possible, and therefore we try collecting the terms in sin x, and breaking up
the fraction into two fractions. Thus

Ay . cos 4, ~ 1 sin Ax
(i2) T~ S10 Xxp TR + COS8 Xp “Ar
To obtain dy/dx we must determine the limit of Ay/Ax as Ax
approaches 0. The right gide is.a sum of two terms, and according to the
theorem that the limit of & sum is the sum of the limits we may consider

each term separately. As for the term

cos Ax — 1

13 Sin Xy A \

the quantity sin x, is a constant. A theorem on limits tells us that the limit
of the product is the constant times the limit of the second factor. This limit
is precisely the one we considered in (11), except for a factor of —1 and the
fact that the x in (11) is the Ax in (13). Hence the limit of (13} is 0.

The term '

(14} COS Xg ____suz\fx

in (12) is again a constant times a function of Ax, and the limit of this term
is the constant times the limit of (sin Ax)/Ax. By (7) we see that the limit of
(14) is cos X .
We have, then, from the consideration of (13} and (14) that
dy Ay

s AR
e = fiM - == COS X
dx  axoo Ax ¢
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This result holds at every value of x, and therefore we have that if
y == sin x the derived function is

. d
(15) Fie COS§ x.

Now that we have the derived function in (15), the chain rule enables
us to handle more complicated sine functions. Suppose that y = sin 3x. To
obtain dy /dx we regard 3x as u; we then have

(16) ¥ = sin u, 1= 3x.

The chain rule states that

Hence from (15) we have
—dl =cos 3= 3cos 3x.
dx :

In fact, no matter how complicated the function of x whose sine is
- being considered, we may always call it ¥ and write v = sin ¥ with
representing that function of x. Then

an - %=cosu§§’~.

The derivatives of the other five trigonometric functions are readily
obtained. Let us remind ourselves first of the behavior of the function
y = cos x. This is shown in Fig, 10-5,

To obtain the derivative of y = cos x, we can go through the method
of increments, but it is easier to obtain it from (17). We know that we can
relate cos x to sin x through the trigonometric identity

cos x = sin(x o —g— )

Figure 10-5
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This identity holds for every value of x. Hence to differentiate y = cos x,
we may differentiate y = sin(x + = /2). With the chain rule the result is
immediate. We regard x + 7 /2 as u, so that

y = sin u, u=x+ 5.

2
Then by {17}

@
dx

cos i 1= cos(x + %)

But we have the identity

cos(x -+ 372»«) = —§in x.
Hence, if y = cos x,
d )
(18) = —sinx,

As in the case of y = sin x, if we have y = cos#, where u is some
function of x, we may apply the chain rule to write

(19) %=msinu§%.

For the function y = tan x, whose behavior is shown in Fig. 10-6, the
derived function is readily obtained. We have only fo note that

sinx

=tanx = -
Y cos x

and we may now apply the theorem on the derivative of the quotient of two
functions. We leave the details for an exercise and merely note the result, If

Figure 10-6
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y = tan x, then

dy 5
(20) 5 = sec? x.

Here we should note that the derived function exists at all values of x,
except when x is an odd multiple of #/2 (see Fig, 10-8). As in the case of
y = sin x, if we have y = tan u, where » is a function of x, then

. dy s du
21 Te T seci U=
The case of y = cot x is practically the same as y = tan x. The graph
of the function is shown in Fig. 10-7. To obtain the derived function of
¥y = cot x, we have only to note that

(22} = cot x = 08X
sin x

and apply the theorem on the derivative of a quotient of two functions.
Again we leave the details for an exercise and note the result. If ¥ = cot x,
then

. _ dy
(23) p CsC* X,

and if y = cot ¥, where i is a function of x, then

dy . 2 a'u
(24) | = CRC* U po

The derived function in (23) fails to exist when x is any multiple of « (see
Fig. 10-9).

Figure 10-7
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The derived function of ¥ = sec x, whose behavior is shown in Fig,
10-8, is also obtainable at once. Because

1

(25} yo=secx m o,

the theorem on the derived function of a quotient of two functions can be
applied and yields : ‘

{2B) % = gac x fan x.

Also, if y = sec u, where u is a function of x, then

ay du
(27) o= secu lanu oo
The derived function in (26) does not exist when x is an odd multipie of
/2.

Finally, we consider the sixth trigonometric function y = csc x, whose
behavior is shown in Fig. 10-9. The derived function is obtainable from the
fact that
(28) y = csC X = A

sinx ’
The result 15
(29) flé’m = —c§C x cot x.

dx
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If v = csc u, where w.is a function of x, then

av du
(2o = TCsC U cot o

7

The derived function in (29) fails to exist when x is any multiple of 7.
Let us put together our results on the six functions. In all cases to be

stated u is a function of x.

. I dy . du
39 If y = sin u, then - = cos u o
{32) : ¥y = cos u, then ﬁf}i = —g8i1n uéﬁ
i dx - dx
e dy - 2 du
(33) If y = tan u, then Iy T sectu po
r — dy — 2 du
(34) If v = cot u, then Z = Tesctu ol
_ dy - du
(35) If v = sec u, then o = secu tan u i
(38) Ify = cscw, then —c-i)—) = —g8C ¥ cot u«gi'- .
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EXERCISES
1. Find the derived functions of each of the following functions:
(a) y =-sin 2x. (h} f{x)} = sin x cot x.
Ans. dy/dx =2cos2x. (i) f(x} = cosx tan x.
{(b) y = cos S5x. Ans. f'(x) = cos x.

b= - T I ¥ ]

(C) ¥ = 3 ¢cos 2x. (j) ¥ = V1 — COS?')_C
Ans. dy/dx = —6sin2x. qy , 2VTF tandx.

Ed}) y=5 taz 5x. Ans. dp/dx = sec x tan x.
e} = sec4x. T T

Ang, dy/dx = 4 sec 4x tan 4x. ® y}{ v zd ZOS * "sin x cos x

() » =sin x cos x. s y/x—\/li-sinzx.

@) T s Ax 5 i 2

Ans. dy/dx = m;’“u
cos” 2x

. Find the derived functions of each of the following functions:

(8 y=sin’x, i x =xcos—1—,

Ans. dv/dx = 3 sin® x cos x. VNS X ! l
fb) y = sin® x cos x, Ans. fi{x) = cos st sin <
{©) y = sin® 2x. B . /T

Ans, dv/dx = 6 sin® 2x cos 2x. () Jlx) = \/.;m o
@ v —Vanx (ky »y = cos(sin x).
(€ y = cos? 2)’{ Ans. dy /dx = —sin{sin x)cos x.

= oS . - cin? 2

Ans. dy/dx = ~4 sin 2x cos 2x, By = sn angxcos x

() »y=sinx> (m) flxy= ==

(&) » = tan2x cot 2x, o Ans. f'(x) = —4sin x cos x.
Ans. y' =0,

= sin -
(hy y =sin pE ‘
A sin(x, + Ax) — sin x
. Given that E{-C— = (% Ax) ® use the identity

sin 4 — sin B = 2 cos

to find oy /dx.

. To differentiate y = cos x, we might use a trigonometric identity and write

¥ = sin( —721 —x), Obtain dv /dx from this form of cos x.

. Using the fact that tan x = sin x/cos x, find y* when p = tan x.

. Using the fact that cot x = cos x/sin x, find »" when y = cot x. '

. Using the fact that sec x = 1/cos x, find y" when y = sec x.

. Using the fact that csc x = 1/sin x, find y” when y = csc x.

., Given y ='sin x, find 4%/ dx% Ans, d%/dx? = —sin x.
. Given y = cos x, find d% /dx®

i1,

Let us accept for the present the fact that the range of a projectile fired from a
gun which is inclined at an angile 4 to the ground is given by the formula
R = (V*/16) sin 4 cos 4, where V, the initial velocity of the projectile, is

fixed. Find the value of 4 for which the range is maximum. Ans. /4.
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sin(2x + 2Ax) ~ sin 2x

Find the valye of lim

Ax—0 Ax
Find the value of lim SBX L Ans, 0.
xomil x —a/2

A mass M is drawn up a straight incline of given height # by a mass m which is
attached to the first mass by a string passing from it over a pulley at the top of
the incline (Fig. 10-10) and which hangs vertically. Find the angle of the incline
in order that the time of ascent be a minimum.
Suggestion: The net force acting on M is 32m ~ 32M sin 4.
Ans. sind = m/IM.

Figure 16-10

Given a point and a vertical line distant 4 from it, find the inclination of the
straight line which would guide a particle acted on only by gravity from the
point to the vertical line in the shortest time. Ans. w/4.
A swinging pendulum is 4 feet long and is rotating at the rate of 18° /sec when
it makes an angle of 30° with tie vertical. How fast is the end of the pendulum
rising or falling at that moment? Ans. @ /5 ft/sec,

An airplane, flying at an altitude of 2 miles, passes directly over an observer on
the ground. A few moments later the observer noies that the airplane’s angle of
elevation is 30° and is decreasing at the rate of 15° /min. How fast is the plane
traveling? Ans. 2w /3 mi/min,
A revolving beacon 3600 feet off a straight shore makes 2 revolutions per
minute, How fast does its beam sweep along the shore (a} at the point on the

‘shore nearest the beacon? (b) at the point on the shore 4800 feet away from

the beacon? Ans. (a) 14,400 ft/min.; (b) 25,600 ft/min,

A ferris wheel 50 feet in diameter makes 1 revolution every 2 minutes. If the
center of the wheel is 30 feet above the ground, how fast is a passenger in the
cab rising when he reaches a height of 40 feet?

-Suggestion: Let A be the angle between the line from the center of the
wheel {0 the cab and the line from the center of the wheel to the ground. Then
the height of the cab above the ground is & = 30 — 25 cos 4.

Ans. 5V2I1 % ft/min.
A destroyer at 4 sights a battleship at B, 2 miles away (Fig. 10-11). The latter is
sailing due east at 10 mi/hr and the former is capable of sailing at 8 mi/hr. In

what direction should the destroyer sail to come as close as possible to the
batdeship?
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21

D

Figure 16-11

Suggestion: Suppose that the destroyer takes the direction # and sails for
some time ¢ unti} it is closest to the battleship, The destroyer may then be at €
and the battleship at D. The destroyer can do better by sailing in the direction
¢, the angle determined by the straight line from 4 to D, for in that same time ¢
it can travel the distance AC’ equal to AC, and DC' is then less than DC.
Hence it is necessary to consider only the situations in which the destroyer
heads directly for the position of the battieship, However, this still leaves open
a domain of possible values for ¢, and the problem then becomes, which value
of ¢ is best? Ans. sin ¢ = 0.8.

A steel girder 27 feet long is moved on rollers along a passageway and into a
corridor 8 feet wide and at right angles to the passageway. How wide must the
passageway be for the girder to go around the corner?

Suggestion: ldealize the girder as the line segment AB of Fig. 10-12. As
the girder is moved around the corner it is best to keep it touching the inner
veriex at O and touching the outer wall of the corridor. Then # varies as the
girder is moved into the corridor. The largest value of x as # varies from 90° (o
0° is the required width of the passageway. Ans, 5V5 .,

Figure 10-12

5. Infegration of the Trigonometric Functions, Every new formula of
differentiation gives us a new formula for integration. Thus from formulas
{31) to (36) we have the following

du

If g{’_ = §in ¥ ==, then
X

dx

@n . ¥ %fsin u% dx = —cosu + C.
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a du

If gy T eosu—=, then

(38) y=fcosu§§c‘-dx=sinu+c.
dy . .2 dit

If o e U= , then

(39) waseczu%dx=tanu+c
dy _ g_ du

If ax T esclu— , then

(40) ' ymfcsczug%dx=—~cotu+(f.
& _ du

If 7y = Secu tan e then

(€3]] y=—~fsecutanu%dx=secu+c.

H fb—) = CSC W COL U gir:!_ , then
dx

(42) y=fcscucotug%m-mcscu+c.

As in the case of the algebraic functions, integration is more difficuit
than differentiation. Let us consider a few examples involving the trigono-
metric functions.

Given

&y
T = = ¢os 2x,

fet us find y. If we think of 2x as u, we have dy/dx = cos u. If we had in
- addition the factor du/dx, we could integrate by applying (38). In the
present case, because du/dx is 2, we write

dy
Ty =z 05U 2

Now, apart from the factor 1, our derivative is in the form called for by
(38). However, a constant factor can be kept separate and merely multiplied
into the integral. Hence

y=isinu+ C=1%sinlx + C.

We may recall that the factor du/dx, which is 2 in this example, does not
itself give rise to any term in the integral.



