1. Find the domain of $f(x) = \sqrt{x^2 - 1}$.

2. Evaluate the sum $\sum_{k=1}^{4} \frac{k^2}{5}$.

3. Compute in any way $\lim_{x\to\infty} \frac{3x+17}{x}$.

4. Compute in any way $\lim_{x\to 2} \frac{x^2}{x-3}$.

5. Convert the repeating decimal $1.\overline{7}$ to a fraction.

6. Use induction to show $1+3+5+\cdots+(2n-1)=n^2$ for every positive integer n.

7. Solve the inequality $|2x - 1| \ge 5$.

8. Use δ - ϵ definition of limit to verify $\lim_{x\to 3} x^2 = 9$.

9. Solve the inequality $x^2 + 3x > 10$.

10. Use the method of increments to find $\frac{dy}{dx}$ when $y = 3\sqrt{x}$.

- 11. Work only one of the following problems.
 - (i) Suppose y = uv where u and v depend on the variable x. Use the method of increments to verify that

$$\frac{dy}{dx} = \frac{du}{dx}v + u\frac{dv}{dx}.$$

(ii) Suppose

$$\lim_{x \to 1} f(x) = 2 \qquad \text{and} \qquad \lim_{x \to 1} g(x) = 3.$$

Use the δ - ϵ definition of limit to verify $\lim_{x\to 1} (f(x) + g(x)) = 5$.