Dear class,
Here are my solutions to the first page of Quiz 3.
Sincerely, Eric

1. The binomial theorem states that

$$
\left(x_{0}+\Delta x\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} x_{0}^{n-k}(\Delta x)^{k} \quad \text { where } \quad\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Use the binomial theorem and the method of increments to show that

$$
\frac{d y}{d x}=n x^{n-1} \quad \text { for } \quad y=x^{n}
$$

Solution: By the binomial theorem

$$
\begin{aligned}
y_{0}+\Delta y & =\left(x_{0}+\Delta x\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} x_{0}^{n-k}(\Delta x)^{k} \\
& =x_{0}^{n}+n x_{0}^{n-1} \Delta x+\sum_{k=2}^{n}\binom{n}{k} x_{0}^{n-k}(\Delta x)^{k} .
\end{aligned}
$$

Subtracting $y_{0}=x_{0}^{n}$, dividing by Δx and taking limits yields

$$
\frac{\Delta y}{\Delta x}=n x_{0}^{n-1}+\sum_{k=2}^{n}\binom{n}{k} x_{0}^{n-k}(\Delta x)^{k-1} \rightarrow n x_{0}^{n-1} \quad \text { as } \quad \Delta x \rightarrow 0
$$

Therefore

$$
\frac{d y}{d x}=n x^{n-1}
$$

2. State the definition of

$$
\lim _{x \rightarrow a} f(x)=L
$$

in terms of δ and ϵ.
Solution: For every $\epsilon>0$ there exists $\delta>0$ such that $0<|x-a|<\delta$ implies $|f(x)-L|<\epsilon$.

