1. Use induction to prove the following statements hold for every natural number n.
(i) $1+3+5+\cdots+(2 n+1)=(n+1)^{2}$
(ii) $1^{2}+3^{2}+5^{2}+\cdots+(2 n+1)^{2}=\frac{(n+1)(2 n+1)(2 n+3)}{3}$
2. Simplify the following sums.
(i) $\sum_{k=1}^{n}(2 k)^{3}$
(ii) $\sum_{k=1}^{n}(2 k+1)^{3}$
3. Use the $\delta-\epsilon$ definition of continuity to show
(i) $f(x)=\frac{3}{\sqrt{x+1}}$ is continuous at the point $x_{0}=3$
(ii) $g(x)=\frac{7}{x}$ is continuous at any point $x_{0}>0$
4. Find the following limits.
(i) $\lim _{n \rightarrow \infty} \frac{n^{2}+7}{n^{2}+9}$
(ii) $\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+3 n}-\sqrt{n^{2}+7}\right)$
(iii) $\lim _{n \rightarrow \infty}\left(\frac{1}{n^{2}}+\frac{2}{n^{2}}+\frac{3}{n^{2}}+\cdots+\frac{n}{n^{2}}\right)$
