Honors Math 181 Homework 4 Version A

1. Solve the following inequalities.
(i) $|x-5|>3$
(ii) $\left|x+\frac{2}{x}\right| \leq 3$
2. Use induction to verify that

$$
\frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{2 n} \leq 1
$$

holds for every natural number $n \geq 3$.
3. Simplify the sum $\sum_{k=n}^{n+5} 2^{k}$.
4. Find the following limits if they exist. If the limit doesn't exist explain why.
(i) $\lim _{n \rightarrow \infty} \frac{17 n^{2}}{n^{2}+5}$
(ii) $\lim _{n \rightarrow \infty} \frac{17 n^{2}}{n+5}$
(iii) $\lim _{n \rightarrow \infty} \frac{17 n}{n^{2}+5}$
(iv) $\lim _{n \rightarrow \infty} \frac{n}{1+7^{n}}$
(v) $\lim _{n \rightarrow \infty}(2 n)^{1 / n}$
(vi) $\lim _{n \rightarrow \infty}\left(n-\sqrt{n^{2}+5 n}\right)$
(vii) $\lim _{n \rightarrow \infty}\left(\frac{9}{10}+\frac{9}{10^{2}}+\frac{9}{10^{3}}+\cdots+\frac{9}{10^{n}}\right)$
(viii) $\lim _{n \rightarrow \infty}\left(\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n(n+1)}\right)$
5. Define $h(x)=3 f(x)$. Use the $\delta-\epsilon$ definition of continuity to show that if $f(x)$ is continuous at x_{0} then $h(x)$ is also continuous at x_{0}.
6. Define $w(x)=f(x)+g(x)$. Use the $\delta-\epsilon$ definition of continuity to show that if $f(x)$ and $g(x)$ are continuous at x_{0} then $w(x)$ is also continuous at x_{0}.

