Honors Math 181 Homework 6 Version A

1. Let $f(x)=x$ and $x_{j}=a+j \frac{b-a}{n}$.
(i) Find $\Delta x_{j}=x_{j}-x_{j-1}$.
(ii) Simplify $\sum_{j=1}^{n} f\left(x_{j}\right) \Delta x_{j}$.
(iii) Compute $\lim _{n \rightarrow \infty} \sum_{j=1}^{n} f\left(x_{j}\right) \Delta x_{j}$.
2. Let $f(x)=\sqrt{x}$ and $x_{j}=(1+j / n)^{2}$.
(i) Find $\Delta x_{j}=x_{j}-x_{j-1}$.
(ii) Simplify $\sum_{j=1}^{n} f\left(x_{j}\right) \Delta x_{j}$.
(iii) Compute $\lim _{n \rightarrow \infty} \sum_{j=1}^{n} f\left(x_{j}\right) \Delta x_{j}$.
(iv) Interpret the above limit as an area and draw a sketch of that area.
3. Use the identities

$$
\begin{aligned}
& 2 \sin a \sin b=\cos (a-b)-\cos (a+b) \\
& 2 \sin a \cos b=\sin (a-b)+\sin (a+b)
\end{aligned}
$$

and the limits

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1, \quad \lim _{n \rightarrow \infty} \sqrt[n]{p}=1, \quad \lim _{n \rightarrow \infty} n(\sqrt[n]{p}-1)=\ln p \quad \text { for } p>0
$$

along with the other limit laws to find the following limits.
(i) $\lim _{n \rightarrow \infty}\left(1-2^{1 / n}\right)$
(ii) $\lim _{n \rightarrow \infty} n\left(1-2^{1 / n}\right)$
(iii) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{3 x}$
(iv) $\lim _{x \rightarrow 0} \frac{\cos (x)-\cos (3 x)}{x^{2}}$

