Honors Math 181 Homework 6 Version A

1. Let
$$f(x) = x$$
 and $x_j = a + j\frac{b-a}{n}$.
(i) Find $\Delta x_j = x_j - x_{j-1}$.
(ii) Simplify $\sum_{j=1}^n f(x_j)\Delta x_j$.
(iii) Compute $\lim_{n\to\infty} \sum_{j=1}^n f(x_j)\Delta x_j$.
2. Let $f(x) = \sqrt{x}$ and $x_j = (1 + j/n)^2$.
(i) Find $\Delta x_j = x_j - x_{j-1}$.
(ii) Simplify $\sum_{j=1}^n f(x_j)\Delta x_j$.
(iii) Compute $\lim_{n\to\infty} \sum_{j=1}^n f(x_j)\Delta x_j$.

(iv) Interpret the above limit as an area and draw a sketch of that area.

3. Use the identities

$$2\sin a \sin b = \cos(a-b) - \cos(a+b)$$
$$2\sin a \cos b = \sin(a-b) + \sin(a+b)$$

and the limits

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1, \qquad \lim_{n \to \infty} \sqrt[n]{p} = 1, \qquad \lim_{n \to \infty} n(\sqrt[n]{p} - 1) = \ln p \qquad \text{for } p > 0$$

along with the other limit laws to find the following limits.

(i)
$$\lim_{n \to \infty} (1 - 2^{1/n})$$

(ii) $\lim_{n \to \infty} n(1 - 2^{1/n})$
(iii) $\lim_{x \to 0} \frac{\sin 2x}{3x}$
(iv) $\lim_{x \to 0} \frac{\cos(x) - \cos(3x)}{x^2}$