Theorem. For all real values x and y we have

$$
\sin (x+y)=\sin x \cos y+\cos x \sin y
$$

Proof: Consider the following diagram.

By similar triangles

$$
\frac{a}{\cos y}=\frac{\sin x}{1} \quad \text { so that } \quad a=\sin x \cos y
$$

and also

$$
\frac{b}{\sin y}=\frac{\cos x}{1} \quad \text { so that } \quad b=\cos x \sin y
$$

Therefore

$$
\sin (x+y)=a+b=\sin x \cos y+\cos x \sin y
$$

Remarks: The difficult part of the proof is drawing the diagram. To check that you understand the diagram and the proof, please complete the following study activities:

1. Place a square to indicate each right angle in the diagram.
2. In the computation of b there is a fraction with the number 1 in it's denominator. Find the line in the diagram corresponding to the 1 that appears in this fraction.
3. Explain why the two angles marked x in the diagram are equal.
4. Redo the proof from memory using the letters a and b for the angles.
5. This proof assumes $x>0$ and $y>0$ and $x+y<\pi / 2$. Draw another diagram where $0<x<\pi / 2$ and $0<y<\pi / 2$ and $x+y>\pi / 2$, then redo the proof for this case.
