Math 181 Exam 1 Version A

1. Convert the repeating decimal $7 . \overline{8}$ into an improper fraction.
2. Solve the inequality $|x-4| \geq 1$
3. State and prove the Pythagorean theorem.

Math 181 Exam 1 Version A

4. Solve the inequality $\left|x^{2}+2 x-9\right|<6$.
5. Find a formula for each of the following sums.
(i) $\sum_{k=n}^{n+9} k$
(ii) $\sum_{k=1}^{n}(k+14)^{2}$

Math 181 Exam 1 Version A

6. Use induction to show that

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

for every positive integer n.
7. Solve the limits
(i) $\lim _{n \rightarrow \infty} \frac{n+5}{7-2 n}$
(ii) $\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-\sqrt{n^{2}-3 n}\right)$

Math 181 Exam 1 Version A

8. Use $\epsilon-\delta$ to verify that $f(x)=\frac{1}{x}$ is continuous at $x_{0}=4$.
9. Solve the limits
(i) $\lim _{x \rightarrow 2} \frac{x^{2}}{x+3}$.
(ii) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$.

Math 181 Exam 1 Version A

The limit law

$$
\text { if } \lim _{n \rightarrow \infty} a_{n}=L \text { and } L>0 \text { then } \lim _{n \rightarrow \infty} \sqrt{a_{n}}=\sqrt{L} .
$$

may be verified by the following argument.
Proof. Suppose $\epsilon>0$.
Let $\epsilon_{1}=\min \left(\frac{L}{2}, \epsilon(\sqrt{L / 2}+\sqrt{L})\right)$. Then by hypothesis
there is N_{1} large enough so that $n \geq N_{1}$ implies $\left|a_{n}-L\right|<\epsilon_{1}$.
Choose $N=N_{1}$. Then $n \geq N$ implies $n \geq N_{1}$ so that

$$
\left|a_{n}-L\right|<\frac{L}{2} \quad \text { and } \quad-\frac{L}{2}<a_{n}-L<\frac{L}{2} \quad \text { and } \quad \frac{L}{2}<a_{n}<\frac{3 L}{2}
$$

Therefore

$$
\begin{aligned}
\left|\sqrt{a_{n}}-\sqrt{L}\right| & =\left|\sqrt{a_{n}}-\sqrt{L}\right| \cdot\left|\frac{\sqrt{a_{n}}+\sqrt{L}}{\sqrt{a_{n}}+\sqrt{L}}\right|=\left|\frac{a_{n}-L}{\sqrt{a_{n}}+\sqrt{L}}\right| \\
& <\frac{\epsilon_{1}}{\left|\sqrt{a_{n}}+\sqrt{L}\right|}<\frac{\epsilon_{1}}{\sqrt{L / 2}+\sqrt{L}} \leq \frac{\epsilon(\sqrt{L / 2}+\sqrt{L})}{\sqrt{L / 2}+\sqrt{L}}=\epsilon
\end{aligned}
$$

10. Adapt this proof to verify the limit law

$$
\text { if } \lim _{x \rightarrow 4} f(x)=L \text { and } L>0 \text { then } \lim _{x \rightarrow 4} \sqrt{f(x)}=\sqrt{L}
$$

