${\bf 1.}\,$ State the following integration and differentiation formula:

$\int_{a}^{b} \cos x dx =$		$\int_{a}^{b} \arccos x dx =$	
		ass	suming $-1 \le a < b \le$
ch		ch	
$\int_{a}^{b} \sin x dx =$		$\int_{a}^{b} \arcsin x dx =$	
,		ass	suming $-1 \le a < b \le$
$\int_{a}^{b} 7^{x} dx =$		$\int_{a}^{b} \sqrt[n]{x} dx =$	
'			assuming $0 < a <$
$\int_{a}^{b} \ln x dx =$		$\int_{a}^{b} \frac{1}{x} dx =$	
	assuming $0 < a < b$		assuming $0 < a <$
$\int_{a}^{b} x^{n} dx =$		$\frac{d}{dx}\ln x =$	
			assuming $x >$
$\frac{d}{dx}\cos x =$		$\frac{d}{dx}\arccos x =$	
			assuming $-1 < x <$
$\frac{d}{dx}\sin x =$		$\frac{d}{dx}\arcsin x =$	
1			assuming $-1 < x <$
$\frac{d}{dx}e^x =$		$\frac{d}{dx}\sqrt[n]{x} =$	
			assuming $x >$
$\frac{d}{dx}x^n =$		$\frac{d}{dx}\frac{1}{x} =$	
ux		ux x	

assuming $x \neq 0$

2. State in terms of ϵ and N what it means for $\lim_{n\to\infty} a_n = L$.

3. State the mean value theorem for integrals.

4. Given a function f(x) state the definition of the derivative f'(x) in terms of limits.

5. Use δ and ϵ to show that $f(x) = \frac{1}{x}$ is continuous at $x_0 = 2$.

6. Find a formula for each of the following sums:

(i)
$$\sum_{k=1}^{n} \left(\frac{1}{2^k} - \frac{k^2}{2} \right)$$

(ii)
$$\sum_{k=n}^{n^2} (1+3k)$$

- 7. Work one of the following:
 - (i) Use induction to prove

$$1+3+5+\cdots+(2n-1)=n^2$$
 for $n=1,2,3,\ldots$

(ii) Let $f(x) = x^2$. Use the limit definition of derivative to show f'(x) = 2x.

8. Find the following limits:

(i)
$$\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x}$$

(ii)
$$\lim_{x \to 0} \frac{x \cos 3x}{\sin 2x}$$

(iii)
$$\lim_{n\to\infty} \left(\sqrt[n]{3} - \sqrt[n]{4}\right)$$

(iv)
$$\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^n$$

9. Find the following integrals:

(i)
$$\int_{-1}^{1} (x^2 + 1)(x^2 - 1) dx$$

(ii)
$$\int_0^2 \frac{5}{2x+1} \, dx$$

(iii)
$$\int_0^{\pi/6} \sin^2(x/2) \, dx$$

(iv)
$$\int_0^2 \left| x^2 + \frac{3}{2}x - 1 \right| dx$$