Math 181 Exam 2 Version B

1. State the following integration and differentiation formula:

$$
\begin{aligned}
& \int_{a}^{b} \cos x d x=\square \\
& \int_{a}^{b} \arccos x d x=\square \\
& \text { assuming }-1 \leq a<b \leq 1 \\
& \int_{a}^{b} \sin x d x=\square \\
& \int_{a}^{b} \arcsin x d x=\square \underset{\text { assuming }-1 \leq a<b \leq 1}{ } \\
& \int_{a}^{b} 7^{x} d x=\square \\
& \int_{a}^{b} \sqrt[n]{x} d x=\underbrace{\square}_{\text {assuming } 0<a<b} \\
& \int_{a}^{b} \ln x d x=\square_{\text {assuming } 0<a<b} \\
& \int_{a}^{b} \frac{1}{x} d x=\underbrace{}_{\text {assuming } 0<a<b} \\
& \int_{a}^{b} x^{n} d x=\square \\
& \frac{d}{d x} \ln x=\underbrace{}_{\text {assuming } x>0} \\
& \frac{d}{d x} \cos x=\square \\
& \frac{d}{d x} \arccos x=\begin{array}{|}
\text { assuming }-1<x<1
\end{array} \\
& \frac{d}{d x} \sin x=\square \\
& \frac{d}{d x} \arcsin x=\begin{array}{|}
\text { assuming }-1<x<1
\end{array} \\
& \frac{d}{d x} e^{x}=\square \\
& \frac{d}{d x} \sqrt[n]{x}=\square_{\text {assuming } x>0} \\
& \frac{d}{d x} x^{n}=\square \\
& \frac{d}{d x} \frac{1}{x}=\square_{\text {assuming } x \neq 0}
\end{aligned}
$$

Math 181 Exam 2 Version B

2. State in terms of ϵ and N what it means for $\lim _{n \rightarrow \infty} a_{n}=L$.
3. State the mean value theorem for integrals.
4. Given a function $f(x)$ state the definition of the derivative $f^{\prime}(x)$ in terms of limits.
5. Use δ and ϵ to show that $f(x)=\frac{1}{x}$ is continuous at $x_{0}=2$.

Math 181 Exam 2 Version B

6. Find a formula for each of the following sums:
(i) $\sum_{k=1}^{n}\left(\frac{1}{2^{k}}-\frac{k^{2}}{2}\right)$
(ii) $\sum_{k=n}^{n^{2}}(1+3 k)$
7. Work one of the following:
(i) Use induction to prove

$$
1+3+5+\cdots+(2 n-1)=n^{2} \quad \text { for } \quad n=1,2,3, \ldots
$$

(ii) Let $f(x)=x^{2}$. Use the limit definition of derivative to show $f^{\prime}(x)=2 x$.

Math 181 Exam 2 Version B

8. Find the following limits:
(i) $\lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{1-x}$
(ii) $\lim _{x \rightarrow 0} \frac{x \cos 3 x}{\sin 2 x}$
(iii) $\lim _{n \rightarrow \infty}(\sqrt[n]{3}-\sqrt[n]{4})$
(iv) $\lim _{n \rightarrow \infty}\left(1+\frac{3}{n}\right)^{n}$

Math 181 Exam 2 Version B

9. Find the following integrals:
(i) $\int_{-1}^{1}\left(x^{2}+1\right)\left(x^{2}-1\right) d x$
(ii) $\int_{0}^{2} \frac{5}{2 x+1} d x$
(iii) $\int_{0}^{\pi / 6} \sin ^{2}(x / 2) d x$
(iv) $\int_{0}^{2}\left|x^{2}+\frac{3}{2} x-1\right| d x$
