Math 181 Quiz 6 Version A

1. Find a formula for each of the following sums.

(i)
$$\sum_{k=2}^{n} 5^{k}$$

(ii)
$$\sum_{k=1}^{n} \left(1 + \frac{k}{6}\right)^2$$

2. Find the following limits.

(i)
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 + 2x - 3}$$

(ii)
$$\lim_{x \to 0} \frac{\sin 5x}{3x}$$

Math 181 Quiz 6 Version A

The limit law

if
$$\lim_{x \to x_0} f(x) = L$$
 then $\lim_{x \to x_0} (f(x))^2 = L^2$

may be verified by the following argument.

Proof. Suppose $\epsilon > 0$.

Let $\epsilon_1 = \min\left(1, \epsilon/(1+2|L|)\right)$. Then by hypothesis there is $\delta_1 > 0$ small enough so that $0 < |x - x_0| < \delta_1$ implies $|f(x) - L| < \epsilon_1$.

Choose $\delta = \delta_1$. Then $0 < |x - x_0| < \delta$ implies $0 < |x - x_0| < \delta_1$ so that

$$|f(x) + L| = |f(x) - L + 2L| \le |f(x) - L| + 2|L| < \epsilon_1 + 2|L| \le 1 + 2|L|.$$

Therefore

$$|(f(x))^{2} - L^{2}| = |f(x) - L| \cdot |f(x) + L|$$

< $\epsilon_{1}(1 + 2|L|) \le \frac{\epsilon}{1 + 2|L|}(1 + 2|L|) = \epsilon.$

3. Adapt this proof to verify that

if
$$\lim_{n \to \infty} a_n = 7$$
 then $\lim_{n \to \infty} a_n^2 = 49$.