- 1. Solve the following inequalities.
 - (i) |x+1| < 2x(ii) $|x^2-5| \ge 1$ (iii) $x + \frac{1}{x} \le 7$

2. Use the ϵ - δ definition of limit to verify the limits.

- (i) $\lim_{x \to 1} \frac{x}{x+1} = \frac{1}{2}$ (ii) $\lim_{x \to -3} \frac{1}{x^2} = \frac{1}{9}$ (iii) $\lim_{x \to 2} x^3 = 8$
- **3.** Suppose

$$\lim_{x \to 4} f(x) = 5 \quad \text{and} \quad \lim_{x \to 4} g(x) = -2.$$

Use the ϵ - δ definition of limit verify the limits.

- (i) $\lim_{x \to 4} 3f(x) = 15$ (ii) $\lim_{x \to 4} (x + g(x)) = 2$ (iii) $\lim_{x \to 1} f(4x) = 5$
- 4. Consider the following sequence of approximations given by

$$x_{1} = 2, \qquad x_{2} = 2 + \sqrt{2}, \qquad x_{3} = 2 + \sqrt{2 + \sqrt{2}},$$
$$x_{4} = 2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}},$$
$$x_{5} = 2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}}$$

and the limit

$$L = 2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots}}}$$

- (i) Use your calculator to find decimal representations of x_2 , x_3 , x_4 and x_5 . Write your answer with at least 7 digits of accuracy.
- (ii) Use a technique similar to the one developed in class for continued fractions to find the limit L.