Math 181 Honors Exam 2 Version B

1. Use the rules of Calculus to find the following derivatives:
(i) $\frac{d}{d x} \frac{x}{2+\cos x}$
(ii) $\frac{d}{d x}\left(5^{x} x^{3}\right)$
(iii) $\frac{d}{d x}(1+|x|)^{x}$
(iv) $\frac{d}{d x} \arctan (\arctan x)$

Math 181 Honors Exam 2 Version B
2. State the definition of the limit

$$
\lim _{x \rightarrow a} f(x)=L
$$

in terms of δ and ϵ.
3. State the definition of the derivative $f^{\prime}(x)$ in terms of limits.
4. Show that if $f^{\prime}(x)$ exists at c then $f(x)$ is continuous at c.

Math 181 Honors Exam 2 Version B
5. Suppose $f(x)=\sqrt{x}$. Use the limit definition of derivative to show $f^{\prime}(x)=1 /(2 \sqrt{x})$.
6. Suppose $w(x)=1 / f(x)$ where $f(x)$ is differentiable. Use the limit definition of derivative to show $w^{\prime}(x)=-f^{\prime}(x) /(f(x))^{2}$.

Math 181 Honors Exam 2 Version B

7. Consider the function $f(x)=(1-x) e^{x}$.
(i) Find $f^{\prime}(x)$.
(ii) Find the unique ξ such that $f^{\prime}(\xi)=0$.
(iii) Show $f(x)$ is increasing on $(-\infty, \xi)$ and decreasing on (ξ, ∞).
(iv) Show that $e^{x}-1 \leq x e^{x}$ for every $x \in \mathbf{R}$.

Math 181 Honors Exam 2 Version B

8. Prove one of the following results:
(i) Linear Approximation Theorem. Let f be twice continuously differentiable on an interval containing a and b. Then there is a point c between a and b such that

$$
f(b)=f(a)+f^{\prime}(a)(b-a)+\frac{f^{\prime \prime}(c)}{2}(b-a)^{2} .
$$

(ii) Generalized Mean Value Theorem. Suppose f and g are differentiable on (a, b) and continuous on $[a, b]$. If $g^{\prime}(x) \neq 0$ in (a, b), then there exists a point c in (a, b) such that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

Math 181 Honors Exam 2 Version B
9. [Extra Credit] Give a proof the other theorem in question 8 that you didn't already prove on the previous page.

