Math 181 Honors Final Review Sheet/Homework 8

1. Write $1 . \overline{87}$ as a fraction of the form p / q where p and q are integers.
2. Sum the infinite series $\sum_{n=-3}^{\infty} \frac{1}{2^{n}}$.
3. Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{\sqrt{n+1}}
$$

converges absolutely, converges conditionally or diverges.
4. State the definition of the limit

$$
\lim _{x \rightarrow a} f(x)=L
$$

in terms of δ and ϵ.
5. Use δ and ϵ to show that $f(x)=3 x^{2}$ is continuous at 1 .
6. Suppose $g(x)$ is continuous at 5 Use δ and ϵ to show that the function $w(x)=g(x) / x$ is continuous at 5 .
7. Use the rules of Calculus to find the following derivatives:
(i) $\frac{d}{d x} 7^{x}$
(ii) $\frac{d}{d x} \log \log \log x$
(iii) $\frac{d}{d x}(x \sin 2 x)$
(iv) $\frac{d}{d x} \frac{x^{2}+1}{6+\arctan x}$
8. Suppose $f(x)=1 / x$. Use the limit definition of derivative to show $f^{\prime}(x)=-1 / x^{2}$.
9. Suppose $w(x)=x f(x)$ where $f(x)$ is differentiable. Use the limit definition of derivative to show $w^{\prime}(x)=g(x)+x g^{\prime}(x)$.
10. Find Taylor's formula for $h(x)=\sqrt{1+x}$ when $a=0$.
11. State Newton's method (or recipe) for finding x such that $f(x)=0$.
12. Suppose f is three times continuously differentiable. Use Taylor's theorem to show there exists ξ between $a-h$ and $a+h$ such that

$$
\frac{f(a+h)-f(a-h)}{2 h}=f^{\prime}(a)+\frac{f^{\prime \prime \prime}(\xi)}{6} h^{2}
$$

13. Find the maximum value of $f(x)=x^{2} e^{-x}$ on the interval $[0,5]$.
