Math 181 Honors Quiz 3 Version A

1. Provided $x \neq 1$, then the sum $x^{3}+x^{4}+\cdots+x^{12}$ is equal to
(A) $\frac{x^{13}-x^{3}}{1-x}$.
(B) $\frac{x^{12}-x^{3}}{1-x}$.
(C) $\frac{x^{12}-x^{4}}{1-x}$.
(D) none of the above.
2. Prove the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Math 181 Honors Quiz 3 Version A
3. Sum the series $\sum_{n=2}^{\infty} \frac{1}{5^{n}}$.
4. Prove one of the following theorems:

The Nested Interval Theorem. If $I_{1}, I_{2}, I_{3}, \ldots$ is a sequence of closed intervals that are "nested," that is, each I_{n} contains I_{n+1}, then the intervals I_{n} have at least one point in common.
Convergence of the Alternating Harmonic Series. The alternating series $\sum_{n=1}^{\infty}(-1)^{(n+1)} \frac{1}{n}$ converges.

