Math 181 Honors Quiz 3 Version A

1. Provided $x \neq 1$, then the sum $x^3 + x^4 + \cdots + x^{12}$ is equal to

(A)
$$\frac{x^{13} - x^3}{1 - x}$$
.

(B)
$$\frac{x^{12} - x^3}{1 - x}$$
.

(C)
$$\frac{x^{12} - x^4}{1 - x}$$
.

- (D) none of the above.
- 2. Prove the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Math 181 Honors Quiz 3 Version A

- 3. Sum the series $\sum_{n=2}^{\infty} \frac{1}{5^n}$.
- 4. Prove one of the following theorems:

The Nested Interval Theorem. If I_1, I_2, I_3, \ldots is a sequence of closed intervals that are "nested," that is, each I_n contains I_{n+1} , then the intervals I_n have at least one point in common.

Convergence of the Alternating Harmonic Series. The alternating series $\sum_{n=1}^{\infty} (-1)^{(n+1)} \frac{1}{n}$ converges.