Honors Math 182 Homework 5 Version A

1. Find the following limits:

(i)
$$\lim_{x \to 3^+} \sin \pi x$$

(ii)
$$\lim_{x \to 3^+} \frac{\sin \pi x}{x - 3}$$

(iii)
$$\lim_{x \to 3^-} \cos \pi x$$

(iv)
$$\lim_{x \to 3^-} \frac{\cos \pi x}{x - 3}$$

2. Find the following antiderivatives:

(i)
$$\int x\sqrt{4+x^4} \, dx$$
 (ii) $\int 2^{\sqrt{x}} \, dx$
(iii) $\int \frac{2x^2+7x-1}{x^3+x^2-x-1} \, dx$ (iv) $\int \frac{x^2+1}{x+4} \, dx$
et $f(x) = \frac{1}{x^2+1}$

3. Let $f(x) = \frac{1}{3 - \sqrt{2x - 5}}$.

- (i) Find the domain of all x such that f(x) makes sense and is a real value.
- (ii) Find the derivative f'(x).
- (iii) Find the antiderivative $\int f(x) dx$ (iv) Find the limit $\lim_{b \to 7^-} \int_5^b f(x) dx$

4. Substitute $u = \arctan x$ in the following integrals, but DO NOT SOLVE THEM!

(i)
$$\int_0^1 \arctan x \, dx$$

(ii) $\int_0^{\sqrt{3}} \arctan \sqrt{x} \, dx$

5. Define

$$S(x) = \int_0^x \sin(t^2) dt$$
 and $C(x) = \int_0^x \cos(t^2) dt$

Find the following derivatives. Your answer may include the functions S and C.

(i)
$$\frac{d}{dx} \frac{S(x^2)}{C(x)}$$

(ii) $\frac{d}{dx} (S \circ C)(2x)$

6. Let $f(t) = \cosh(t)$ and g(t) = t.

- (i) Find the length of the curve given by (f(t), g(t)) where $0 \le t \le 2$.
- (ii) Find the surface area given by revolving the curve (f(t), g(t)) where $0 \le t \le 2$ about the *y*-axis.
- (iii) Find the surface area given by revolving the curve (f(t), g(t)) where $0 \le t \le 2$ about the *x*-axis.