1. Find the following limits:
(i) $\lim _{x \rightarrow 3+} \sin \pi x$
(ii) $\lim _{x \rightarrow 3+} \frac{\sin \pi x}{x-3}$
(iii) $\lim _{x \rightarrow 3-} \cos \pi x$
(iv) $\lim _{x \rightarrow 3-} \frac{\cos \pi x}{x-3}$
2. Find the following antiderivatives:
(i) $\int x \sqrt{4+x^{4}} d x$
(ii) $\int 2^{\sqrt{x}} d x$
(iii) $\int \frac{2 x^{2}+7 x-1}{x^{3}+x^{2}-x-1} d x$
(iv) $\int \frac{x^{2}+1}{x+4} d x$
3. Let $f(x)=\frac{1}{3-\sqrt{2 x-5}}$.
(i) Find the domain of all x such that $f(x)$ makes sense and is a real value.
(ii) Find the derivative $f^{\prime}(x)$.
(iii) Find the antiderivative $\int f(x) d x$
(iv) Find the limit $\lim _{b \rightarrow 7-} \int_{5}^{b} f(x) d x$
4. Substitute $u=\arctan x$ in the following integrals, but DO NOT SOLVE THEM!
(i) $\int_{0}^{1} \arctan x d x$
(ii) $\int_{0}^{\sqrt{3}} \arctan \sqrt{x} d x$
5. Define

$$
S(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t \quad \text { and } \quad C(x)=\int_{0}^{x} \cos \left(t^{2}\right) d t
$$

Find the following derivatives. Your answer may include the functions S and C.
(i) $\frac{d}{d x} \frac{S\left(x^{2}\right)}{C(x)}$
(ii) $\frac{d}{d x}(S \circ C)(2 x)$
6. Let $f(t)=\cosh (t)$ and $g(t)=t$.
(i) Find the length of the curve given by $(f(t), g(t))$ where $0 \leq t \leq 2$.
(ii) Find the surface area given by revolving the curve $(f(t), g(t))$ where $0 \leq t \leq 2$ about the y-axis.
(iii) Find the surface area given by revolving the curve $(f(t), g(t))$ where $0 \leq t \leq 2$ about the x-axis.

