
Honors Math 182 Homework 5 Version A

1. Taylor’s formula for f(x) = ln(1− x) when a = 0 is
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(i) Given |x| < 1, the remainder may be estimated as
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Use this estimate to show that if |x| < 1 then the remainder term tends to
zero as n → ∞.

(ii) Given x = 1/2 estimate how large n needs to be so the bound on the remainder
is less than 0.5× 10−4.

(iii) Use the value of n found in Part (ii) to approximate ln(1/2).

2. Taylor’s formula for f(x) = sinx when a = 0 is

sinx =
m
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cos t dt.

(i) Show for x = 3 that the remainder term tends to zero as m → ∞.

(ii) Estimate how large m needs to be so the magnitude of the remainder is less
than 0.5× 10−4.

(iii) Use the value of m found in Part (ii) to approximate sin 3.

3. The trigonometric identity sinx = sin(π − x) shows that

sinx =
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(i) For x = 3 estimate how largem needs to be so the magnitude of the remainder
is less than 0.5× 10−4.

(ii) Use the value of m found in Part (i) to approximate sin 3.

4. Check the speed of convergence of the series approximation for sin 3 found in Ques-
tion 2 and the series approximation in Question 3 by computing the respective sums
for values of m = 1, 2, . . . , 10 and comparing each sum to the exact value of sin 3.
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5. Use Taylor series or L’Hôpital’s rule to find the following limits if they exist.

(i) lim
x→0

ex
2 − cosx

x2

(ii) lim
x→0+

x6

ln(1 + x2)− x2 cosx

(iii) lim
x→0

sin 3x

x3

(iv) lim
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sinx− x cosx
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(v) lim
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ln(1− x2) + x arctanx
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2xex + ln(1− 2x)
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sin4 x

(x) lim
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x+ (x− 1) ln(x+ 1)

xex − sinx


