Honors Math 182 Homework 5 Version A

1. Taylor’s formula for f(z) =1In(1 — z) when a =0 is
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(i) Given |z| < 1, the remainder may be estimated as
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Use this estimate to show that if |z| < 1 then the remainder term tends to
Zero as n — oo.

(ii) Given z = 1/2 estimate how large n needs to be so the bound on the remainder
is less than 0.5 x 1074

(iii) Use the value of n found in Part (ii) to approximate In(1/2).

2. Taylor’s formula for f(x) = sinz when a = 0 is
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(i) Show for z = 3 that the remainder term tends to zero as m — oc.

(ii) Estimate how large m needs to be so the magnitude of the remainder is less
than 0.5 x 1074

(iii) Use the value of m found in Part (ii) to approximate sin 3.

3. The trigonometric identity sin z = sin(w — z) shows that
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(i) For z = 3 estimate how large m needs to be so the magnitude of the remainder
is less than 0.5 x 1074,

(ii) Use the value of m found in Part (i) to approximate sin 3.

4. Check the speed of convergence of the series approximation for sin 3 found in Ques-
tion 2 and the series approximation in Question 3 by computing the respective sums
for values of m = 1,2,...,10 and comparing each sum to the exact value of sin 3.
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5. Use Taylor series or L’Hopital’s rule to find the following limits if they exist.
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