Final Exam Review


\newcount\qnum\newcount\qprt\qnum=0\qprt=0
\def\qn{\global\qprt=0\global\advance\qnum by1\bigskip
	\par\noindent\item{\bf\the\qnum.}}
\def\qnn{\global\advance\qprt by1\bigskip
	\par\noindent\itemitem{\bf(\romannumeral\qprt)}}
\parindent=1cm
\qn 
Solve the initial value problem
$$
	ty'+2y=\sin(t),\qquad y(\pi/2)=1.
$$


\qn 
Solve the initial value problem
$$
	y'=xy^3(1+x^2)^{-1/2},\qquad y(0)=1.
$$


\qn State Theorem 2.4.2 from the book on the local existence and
uniqueness for solutions of the initial value problem
$$
	{dy\over dt}=f(t,y),\qquad y(t_0)=y_0.$$


\qn 
Solve the equation
$$
	y\,dx+(2x-ye^y)dy=0.$$
Hint: Try an integrating factor $\mu=\mu(y)$.


\qn 
Solve the initial value problem
$$
	y''+y=te^t,\qquad y(0)=0,\qquad y'(0)=1.$$


\qn Solve the equation
$$
	y''+t(y')^2=0.
$$


\qn 
State Theorem 3.7.1 from the book on the method of variation of 
parameters which tells how to find the general solution to the 
inhomogeneous equation
$$
	y''+p(t)y'+q(t)y=g(t)
$$
given solutions $y_1$ and $y_2$ of the corresponding
homogeneous equation.


\qn
Determine a lower bound for the radius of convergence of
the series solution about the point $x_0=4$ for the
differential equation
$$
	(x^2-2x-3)y''+xy'+4y=0.$$


\qn Consider the second order linear differential equation
$$
	xy''+y'-y=0.$$
\qnn Show that $x_0=0$ is a regular singular point.
\medskip
\qnn Find the exponents at the singular point $x_0=0$.
\medskip
\qnn Find the first three nonzero terms in each of the
two linearly independent solutions about $x_0=0$.


\qn
Find the Laplace transform ${\cal L}\{f(t)\}$ of $f(t)=3t$.


\qn 
Define the convolution
$(f*g)(t)$ 
of two functions $f(t)$ and $g(t)$.


\qn
The matrix
$$
	A=\left[\matrix{2&1\cr 1&2}\right]
$$
has eigenvectors 
$$\xi_1=\left[\matrix{-1\cr 1}\right]
\qquad\hbox{and}\qquad
\xi_2=\left[\matrix{1\cr 1}\right]$$
with corresponding eigenvalues $\lambda_1=1$ and $\lambda_2=3$.
Solve the initial value problem 
$$x'=Ax,\qquad x(0)=\left[\matrix{1\cr 3}\right].$$


\qn
The matrix
$$
	A=\left[\matrix{-3&2\cr -1&-1}\right]
$$
has eigenvectors 
$$\xi_1=\left[\matrix{1\cr 1/2+i/2}\right]
\qquad\hbox{and}\qquad
\xi_2=\left[\matrix{1\cr 1/2-i/2}\right]$$
with corresponding eigenvalues $\lambda_1=-2+i$ and $\lambda_2=-2-i$.
Find the solution to the initial value problem
$$x'=Ax,\qquad x(0)=\left[\matrix{1\cr -2}\right].$$


Last updated: Sun May 6 09:04:32 PDT 2001