Formula Sheet from Exam 1

Case 1: Distinct Real Roots m_{1} and m_{2}

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

Case 2: Repeated Real Roots $m_{1}=m_{2}$

$$
y=c_{1} e^{m_{1} x}+c_{2} x e^{m_{1} x}
$$

Case 3: Conjugate Complex Roots $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$

$$
y=e^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right)
$$

Bernoulli's Equation

$$
\frac{d y}{d x}+P(x) y=f(x) y^{n}
$$

Formula Sheet from Exam 2

The variation of parameters formula for second order ordinary differential equation is

$$
y_{p}=y_{1} u_{1}+y_{2} u_{2}
$$

where

$$
u_{1}=-\int \frac{y_{2} f(t)}{W\left(y_{1}, y_{2}\right)} d t \quad \text { and } \quad u_{2}=\int \frac{y_{1} f(t)}{W\left(y_{1}, y_{2}\right)} d t
$$

The variation of parameters formula for systems is

$$
X_{p}=\Phi(t) \int \Phi^{-1}(t) F(t) d t
$$

Suppose A is a real matrix such that

$$
\lambda=\alpha+i \beta \quad \text { and } \quad K=B_{1}+i B_{2}
$$

Then the real solutions corresponding to λ and K are

$$
X_{1}=\left[B_{1} \cos \beta t-B_{2} \sin \beta t\right] e^{\alpha t}
$$

and

$$
X_{2}=\left[B_{2} \cos \beta t+B_{1} \sin \beta t\right] e^{\alpha t}
$$

