Math 285 Quiz 2 Review on Euler's Method
Taylor's Theorem. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be an $n+1$ times differentiable function. Then

$$
x(t+h)=x(t)+h \dot{x}(t)+\frac{h^{2}}{2!} \ddot{x}(t)+\cdots+\frac{h^{n}}{n!} x^{(n)}(t)+R_{n}
$$

where

$$
R_{n}=\int_{t}^{t+h} \frac{(t+h-s)^{n}}{n!} x^{(n+1)}(s) d s
$$

Proof. By the Fundamental Theorem of Calculus

$$
x(t+h)-x(t)=\int_{t}^{t+h} \dot{x}(s) d s
$$

Integrating by parts where

$$
u=\dot{x}(s), \quad d v=d s, \quad d u=\ddot{x}(s) d s \quad \text { and } \quad v=-(t+h-s)
$$

yields

$$
\begin{aligned}
x(t+h)-x(t) & =-\left.(t+h-s) \dot{x}(s)\right|_{t} ^{t+h}+\int_{t}^{t+h}(t+h-s) \ddot{x}(s) d s \\
& =h \dot{x}(t)+\int_{t}^{t+h}(t+h-s) \ddot{x}(s) d s
\end{aligned}
$$

Integrating again by parts where

$$
u=\ddot{x}(s), \quad d v=(t+h-s) d s, \quad d u=x^{(3)}(s) d s \quad \text { and } \quad v=-\frac{1}{2}(t+h-s)^{2}
$$

yields

$$
\begin{aligned}
x(t+h)-x(t) & =h \dot{x}(t)-\left.\frac{(t+h-s)^{2}}{2} \ddot{x}(s)\right|_{t} ^{t+h}+\int_{t}^{t+h} \frac{(t+h-s)^{2}}{2} x^{(3)}(s) d s \\
& =h \dot{x}^{\prime}(t)+\frac{h^{2}}{2} \ddot{x}(t)+\int_{t}^{t+h} \frac{(t+h-s)^{2}}{2} x^{(3)}(s) d s .
\end{aligned}
$$

Repeated integration by parts finishes the proof.
Geometric Series Formula. Let $A \in \mathbf{R}$. Then

$$
A^{n-1}+A^{n-2}+\cdots+A+1=\frac{A^{n}-1}{A-1}
$$

Proof. Let

$$
S=A^{n-1}+A^{n-2}+\cdots+A+1
$$

so that

$$
A S=A^{n}+A^{n-1}+\cdots+A^{2}+A
$$

Now, subtracting yields

$$
(1-A) S=1-A^{n}
$$

from which the desired result follows.

Math 285 Quiz 2 Review on Euler's Method
Limit of Compound Interest. We have the following limit

$$
\left(1+\frac{r}{n}\right)^{n} \rightarrow e^{r} \quad \text { as } \quad n \rightarrow \infty
$$

Proof. Since

$$
\left(1+\frac{r}{n}\right)^{n}=\exp \left\{n \log \left(1+\frac{r}{n}\right)\right\}
$$

and the exponential function is continuous, then it is enough to show that

$$
n \log \left(1+\frac{r}{n}\right) \rightarrow r \quad \text { as } \quad n \rightarrow \infty
$$

Let $\theta=1 / n$. Then $\theta \rightarrow 0$ as $n \rightarrow \infty$. Consequently by L'Hôpital's rule

$$
\lim _{n \rightarrow \infty} n \log \left(1+\frac{r}{n}\right)=\lim _{\theta \rightarrow 0} \frac{\log (1+r \theta)}{\theta}=\lim _{\theta \rightarrow 0} \frac{r /(1+r \theta)}{1}=r .
$$

This finishes the proof.
Euler's Method. Euler's method for approximating the solution to the ordinary differential equation initial value problem

$$
\dot{x}=f(x, t) \quad \text { with } \quad x\left(t_{0}\right)=x_{0}
$$

is given as follows. Given $h>0$ define $t_{k}=t_{0}+k h$ and

$$
x_{k+1}=x_{k}+h f\left(x_{k}, t_{k}\right) \quad \text { for } \quad k=0,1,2, \ldots
$$

Then x_{k} is an approximation of $x\left(t_{k}\right)$.

Math 285 Quiz 2 Review on Euler's Method
Convergence of Euler's Method. Let $T>t_{0}$ and set $h=\left(T-t_{0}\right) / n$. Suppose $|\ddot{x}(t)| \leq M$ and $\left|f_{x}(x, t)\right| \leq L$ for all x and $t \in\left[t_{0}, T\right]$. Then $x_{n} \rightarrow x(T)$ as $h \rightarrow 0$.
Proof. Using Taylor's theorem

$$
x_{k+1}-x\left(t_{k+1}\right)=x_{k}+h f\left(x_{k}, t_{k}\right)-\left\{x\left(t_{k}\right)+h f\left(x\left(t_{k}\right), t_{k}\right)+\int_{t}^{t+h}(t+h-s) \ddot{x}(s) d s\right\} .
$$

By the Fundamental Theorem of Calculus for $a<b$ we have

$$
|f(b, t)-f(a, t)|=\left|\int_{a}^{b} f_{x}(r, t) d r\right| \leq \int_{a}^{b}\left|f_{x}(r, t)\right| d r \leq \int_{a}^{b} L d r=L|b-a|
$$

Therefore

$$
\left|f\left(x_{k}, t_{k}\right)-f\left(x\left(t_{k}\right), t_{k}\right)\right| \leq L\left|x_{k}-x\left(t_{k}\right)\right|
$$

Similarly

$$
\left|\int_{t}^{t+h}(t+h-s) \ddot{x}(s) d s\right| \leq \int_{t}^{t+h}(t+h-s) M d s=-\left.\frac{(t+h-s)^{2}}{2} M\right|_{t} ^{t+h}=\frac{h^{2} M}{2}
$$

It follows that

$$
\begin{aligned}
\left|x_{k+1}-x\left(t_{k+1}\right)\right| & \leq\left|x_{k}-x\left(t_{k}\right)\right|+h L\left|x_{k}-x\left(t_{k}\right)\right|+\frac{h^{2} M}{2} \\
& =A\left|x_{k}-x\left(t_{k}\right)\right|+\frac{h^{2} M}{2} \quad \text { where } \quad A=1+h L
\end{aligned}
$$

When $k=0$ we obtain

$$
\left|x_{1}-x\left(t_{1}\right)\right| \leq A\left|x_{0}-x\left(t_{0}\right)\right|+\frac{h^{2} M}{2}=\frac{h^{2} M}{2} \quad \text { since } \quad x\left(t_{0}\right)=x_{0}
$$

When $k=1$ we obtain

$$
\left|x_{2}-x\left(t_{2}\right)\right| \leq A\left|x_{1}-x\left(t_{1}\right)\right|+\frac{h^{2} M}{2} \leq A\left\{\frac{h^{2} M}{2}\right\}+\frac{h^{2} M}{2}=(A+1) \frac{h^{2} M}{2}
$$

When $k=2$ we obtain

$$
\left|x_{3}-x\left(t_{3}\right)\right| \leq A\left|x_{2}-x\left(t_{2}\right)\right|+\frac{h^{2} M}{2} \leq\left(A^{2}+A+1\right) \frac{h^{2} M}{2}
$$

Continuing this pattern and applying the geometric series formula yields

$$
\left|x_{n}-x\left(t_{n}\right)\right| \leq\left(A^{n-1}+A^{n-2}+\cdots+A+1\right) \frac{h^{2} M}{2}=\frac{A^{n}-1}{A-1} \frac{h^{2} M}{2}
$$

Therefore, using the limit of compound interest we have

$$
\begin{aligned}
\left|x_{n}-x\left(t_{n}\right)\right| & \leq \frac{(1+h L)^{n}-1}{(1+h L)-1} \frac{h^{2} M}{2}=\frac{M}{2 L}\left((1+h L)^{n}-1\right) h \\
& =\frac{M}{2 L}\left\{\left(1+\frac{T-t_{0}}{n} L\right)^{n}-1\right\} h \\
& \rightarrow \frac{M}{2 L}\left\{e^{\left(T-t_{0}\right) L}-1\right\} \cdot 0=0 \quad \text { as } \quad h \rightarrow 0 .
\end{aligned}
$$

This finishes the proof.

