Math 285 Midterm Version A

1. Consider the initial value problem

$$
\frac{d x}{d t}=f(x, t) \quad \text { with } \quad x\left(t_{0}\right)=x_{0}
$$

State the existence and uniqueness theorem which shows this ordinary differential equation has a unique solution on some open interval I containing t_{0}.
2. Solve the initial value problem $\dot{x}+3 x=e^{-3 t}$ with $x(0)=7$.

Math 285 Midterm Version A

3. Draw a phase diagram for the autonoumous first-order ordinary differential equation $\dot{x}=x^{3}-5 x$ on the line below. Label the stationary points with a cross \times and draw arrows on the line indicating the direction in which $x(t)$ is changing.
4. Show that the ordinary differential equation

$$
\left(y \cos x+2 x e^{y}\right)+\left(\sin x+x^{2} e^{y}+2\right) y^{\prime}=0
$$

is exact and find the general solution.

Math 285 Midterm Version A
5. Find the unique solution to $\frac{d y}{d x}=\frac{2 x}{1+2 y}$ with $y(0)=1$.
6. Find the general solution to the differential equation

$$
x^{2} y^{\prime}=y^{2}+2 x y .
$$

Math 285 Midterm Version A

7. Find the general solution to the second order initial value problem $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
8. Find the unique solution to the second order initial value problem

$$
y^{\prime \prime}-4 y=0 \quad \text { with } \quad y(0)=1 \quad \text { and } \quad y^{\prime}(0)=0
$$

Math 285 Midterm Version A

9. Consider the differential equation $\ddot{x}-3 \dot{x}-4 x=2 \sin t$.
(i) Find a particular solution for this differential equation.
(ii) Find the general solution to this differential equation.
(iii) Find the unique solution such that $x(0)=1$ and $\dot{x}(0)=4$.
