This document completes the problem I did not have time to finish in class. We were working Webassign Chapter 8.2 Problem 8, which reads
8. Find the general solution of the system

$$
X^{\prime}=\left[\begin{array}{ccc}
3 & -4 & 0 \\
1 & 0 & 2 \\
0 & 2 & 3
\end{array}\right] X
$$

We already used Mathematica to find the eigenvectors and eigenvalues of the matrix by typing

```
In[1]:= A={{3,-4,0},{1,0,2},{0,2,3}}
Out[1]= {{3, -4, 0}, {1, 0, 2}, {0, 2, 3}}
In[2]:= Eigenvalues[A]
Out[2]= {3, 3, O}
In[3]:= Eigenvectors[A]
Out[3]={{-2, 0, 1}, {0, 0, 0}, {-4, -3, 2}}
```

Since there is a repeated eigenvalue and a missing eigenvector, finding three linearly independent solutions is tricky. In particular, we only know the two solutions X_{1} and X_{3} given by

$$
X_{1}=(-2,0,1) e^{3 t} \quad \text { and } \quad X_{3}=(-4,-3,2) e^{0 t}
$$

but not X_{2}. To find X_{2} consider a solution of the form

$$
X_{2}=(-2,0,1) t e^{3 t}+P e^{3 t}
$$

and solve for P. We didn't have time to solve for P in class. But will do so now. Note, by the product rule, that

$$
X_{2}^{\prime}=3(-2,0,1) t e^{3 t}+((-2,0,1)+3 P) e^{3 t}
$$

and by the property of eigenvectors that

$$
A X_{2}=3(-2,0,1) t e^{3 t}+A P e^{3 t}
$$

Equating $X_{2}^{\prime}=A X_{2}$ and simplifying yields

$$
(-2,0,1)+3 P=A P \quad \text { or equivalently } \quad(A-3 I) P=(-2,0,1)
$$

To solve for P substitute for A and subtract 3 from the diagonal to obtain

$$
\left[\begin{array}{ccc}
0 & -4 & 0 \\
1 & -3 & 2 \\
0 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]
$$

This was the last equation I wrote on the board in class. To finish solving for P write this matrix equation as the system

$$
\left\{\begin{aligned}
-4 P_{2} & =-2 \\
P_{1}-3 P_{2}+2 P_{3} & =0 \\
2 P_{2} & =1 .
\end{aligned}\right.
$$

The first and last equations are the same and imply $P_{2}=1 / 2$. Substituting this value into the second equation yields

$$
P_{1}-\frac{3}{2}+2 P_{3}=0
$$

As this is an under-determined system we may choose P_{3} arbitrarily. Upon taking $P_{3}=1$ it follows that

$$
P_{1}=\frac{3}{2}-2=-1 / 2 .
$$

Therefore $P=(-1 / 2,1 / 2,1)$ and consequently

$$
X_{2}=(-2,0,1) t e^{3 t}+(-1 / 2,1 / 2,1) e^{3 t}
$$

The general solution is $X(t)=X_{1} C_{1}+X_{2} C_{2}+X_{3} C_{3}$ which we enter as

8. \quad 1/1 points \mid Previous Answers ZillDiffEQModAp10 8.2.025

\square My Notes \dagger Ask Your Teacher
Find the general solution of the given system.

$$
X^{\prime}=\left(\begin{array}{rrr}
3 & -4 & 0 \\
1 & 0 & 2 \\
0 & 2 & 3
\end{array}\right) x
$$

$\mathbf{x}(\mathrm{t})=\langle-2,0,1\rangle \cdot e^{3 \cdot t} \cdot \mathrm{~A}+\left(\langle-2,0,1\rangle \cdot t+\left\langle-\frac{1}{2}, \frac{1}{2}, 1\right\rangle\right) \cdot e^{3 \cdot t} \cdot B+\langle-4,-3,2\rangle \cdot C$
Need Help?

