Math 285 Final Supplement Study Questions Version A

1. Use the convolution theorem to evaluate the Laplace transform

$$
F(s)=\mathcal{L}\left\{\int_{0}^{t} \tau e^{t-\tau} d \tau\right\}(s)
$$

The Laplace transform is

$$
F(s)=\square
$$

2. Suppose

$$
A=\left[\begin{array}{cc}
1 & 6 \\
7 & 11 \\
10 & 12
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
-6 & 8 & -3 \\
1 & -3 & 2
\end{array}\right]
$$

Find the products

$$
A B=\square \quad B A=\square
$$

3. Consider the matrix

$$
A=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 3 & 1 \\
0 & 4 & -1
\end{array}\right]
$$

with eigenvalues

$$
\lambda_{1}=4, \quad \lambda_{2}=-2 \quad \text { and } \quad \lambda_{3}=-1
$$

and corresponding eigenvectors

$$
K_{1}=\left[\begin{array}{l}
1 \\
5 \\
4
\end{array}\right], \quad K_{2}=\left[\begin{array}{c}
1 \\
-1 \\
4
\end{array}\right] \quad \text { and } \quad K_{3}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Find the general solution of the matrix differential equation $X^{\prime}=A X$.

$$
X(t)=
$$

Math 285 Final Supplement Study Questions Version A
4. Consider the matrix

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]
$$

with eigenvalues

$$
\lambda_{1}=1+2 i \quad \text { and } \quad \lambda_{2}=1-2 i
$$

and corresponding eigenvectors

$$
K_{1}=\left[\begin{array}{l}
1 \\
i
\end{array}\right], \quad \text { and } \quad K_{2}=\left[\begin{array}{c}
i \\
1
\end{array}\right]
$$

Find the unique solution of the matrix differential equation

$$
X^{\prime}=A X, \quad X(0)=\left[\begin{array}{l}
3 \\
4
\end{array}\right]
$$

5. Consider the matrix

$$
A=\left[\begin{array}{cc}
5 & -1 \\
4 & 1
\end{array}\right]
$$

with an eigenvalue

$$
\lambda_{1}=3 \quad \text { of multiplicity } \quad 2
$$

and corresponding eigenvector

$$
K_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Note that this is the case where there is no second eigenvector. Find the general solution of the matrix differential equation $X^{\prime}=A X$.

$$
X(t)=
$$

