Math 330 Final Exam Version A

1. Let

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 3 & 1 \end{bmatrix}.$$

Write A as LDU where L is lower triangular with ones on its diagonal, D is diagonal and U is upper triangular with ones on its diagonal.

2. Let

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix}.$$

Find the reduced row echelon form R of A.

3. Consider the matrix A with reduced row echelon form R given by

$$A = \begin{bmatrix} 6 & 0 & 6 & 1 & 4 \\ 0 & 3 & 6 & 3 & 0 \\ 1 & 0 & 1 & 0 & 5 \\ 1 & 0 & 1 & 4 & 5 \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

- (i) Find a basis for the subspace C(A) and state its dimension.
- (ii) Find a basis for the subspace $\mathcal{N}(A)$ and state its dimension.

4. Let

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}.$$

Find an orthogonal matrix Q and an upper triangular matrix R such that A = QR.

5. Let

$$Q = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{2\sqrt{2}}{3} & \frac{-1}{3\sqrt{2}} & \frac{-1}{3\sqrt{2}} \end{bmatrix}, \qquad R = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}.$$

Note that Q is orthogonal and R upper triangular. Suppose A = QR. Find the x which minimizes ||Ax - b||.

Math 330 Final Exam Version A

6. Let

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}.$$

Find $\det A$.

- 7. Let A and B be 3×3 matrices with A positive definite. Suppose det A = 3 and det B = -1.
 - (i) Find det(-2B).
 - (ii) Find $det(B^T)$.
 - (iii) Find $\det(A^{1/2})$.
 - (iv) Find $det(A^{-2}B)$.
- **8.** Let

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}.$$

Find the eigenvectors and eigenvalues of A

9. Let A be a matrix with eigenvalue-eigenvector pairs given by

$$\begin{array}{c|c}
x & x \\
\hline
6 & \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \\
7 & \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\
4 & \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

Find \sqrt{A} .

10. Let

$$A = \begin{bmatrix} 2 & 2 \\ -1 & 2 \end{bmatrix}.$$

Find the singular value decomposition $A = U\Sigma V^T$ where U and V are orthogonal and Σ is diagonal.

Linear Algebra Formula Sheet

Orthogonal Projection

$$P = A(A^T A)^{-1} A^T$$

Least Squares

$$x = (A^T A)^{-1} A^T b$$

Gram-Schmidt

$$\begin{split} \tilde{q}_1 &= a_1 & q_1 &= \tilde{q}_1 / \| \tilde{q}_1 \| \\ \tilde{q}_2 &= a_2 - q_1 (q_1 \cdot a_2) & q_2 &= \tilde{q}_2 / \| \tilde{q}_2 \| \\ \tilde{q}_3 &= a_3 - q_1 (q_1 \cdot a_3) - q_2 (q_2 \cdot a_3) & q_3 &= \tilde{q}_3 / \| \tilde{q}_3 \| \\ \vdots & \vdots & \vdots & \vdots \\ \tilde{q}_n &= a_n - q_1 (q_1 \cdot a_n) - q_2 (q_2 \cdot a_n) - \dots - q_{n-1} (q_{n-1} \cdot a_n) & q_n &= \tilde{q}_n / \| \tilde{q}_n \|. \end{split}$$

Least Squares using Gram-Schmidt

$$Rx = Q^T b$$
 where $R = Q^T A$

Combinatorial Determinant Formula

$$\det A = \sum_{\text{all } n \, \times \, n \text{ permuation matrices } P} (\det P) (\text{product of the diagonal of } PA)$$

Cofactor (Laplace's) Expansion

$$\det A = \sum_{i=1}^{n} a_{ij} C_{ij} \quad \text{where} \quad C_{ij} = (-1)^{i+j} \det M_{ij}$$

and M_{ij} is the submatrix of A resulting from deleting row i and column j.

Formula for the Inverse

$$A^{-1} = \frac{C^T}{\det(A)}$$

Cramer's Rule

$$x_1 = \frac{\det B_1}{\det A}$$
 $x_2 = \frac{\det B_2}{\det A}$. . $x_n = \frac{\det B_n}{\det A}$