Orthogonal Complements

The orthogonal complement S^{\perp} of a subspace S of \mathbf{R}^{m} is defined

$$S^{\perp} = \left\{ y \in \mathbf{R}^m : v \cdot y = 0 \text{ for all } v \in S \right\}$$

If $v \in S$ then $y \cdot v = 0$ for every $y \in S^{\perp}$. Thus $S \subseteq (S^{\perp})^{\perp}$. Let A consist of columns that form a basis of S. Then $S = \mathcal{C}(A)$ and

$$\mathcal{C}(A)^{\perp} = \left\{ y \in \mathbf{R}^m : v \cdot y = 0 \text{ for all } v \in \mathcal{C}(A) \right\}$$

= $\left\{ y \in \mathbf{R}^m : Ax \cdot y = 0 \text{ for all } x \in R^n \right\}$
= $\left\{ y \in \mathbf{R}^m : x \cdot A^T y = 0 \text{ for all } x \in R^n \right\}$
= $\left\{ y \in \mathbf{R}^m : A^T y = 0 \right\} = \mathcal{N}(A^T).$

Given $v \in \mathcal{N}(A^T)^{\perp}$, consider the $m \times (n+1)$ matrix

$$B = \left[A \middle| v \right].$$

Since $A^T y = 0$ implies $v \cdot y = 0$, then

$$\mathcal{N}(B^T) = \left\{ y \in \mathbf{R}^m : B^T y = 0 \right\}$$
$$= \left\{ y \in \mathbf{R}^m : A^T y = 0 \text{ and } v \cdot y = 0 \right\}$$
$$= \left\{ y \in \mathbf{R}^m : A^T y = 0 \right\} = \mathcal{N}(A^T).$$

Therefore,

$$\dim \mathcal{C}(A) = \dim \mathcal{C}(A^T) = m - \dim \mathcal{N}(A^T)$$
$$= m - \dim \mathcal{N}(B^T) = \dim \mathcal{C}(B^T) = \dim \mathcal{C}(B)$$

Since $\mathcal{C}(A) \subseteq \mathcal{C}(B)$, then $\mathcal{C}(A) = \mathcal{C}(B)$. Therefore $v \in \mathcal{C}(A)$, and so $\mathcal{N}(A^T)^{\perp} \subseteq \mathcal{C}(A)$. Now

$$(S^{\perp})^{\perp} = (\mathcal{C}(A)^{\perp})^{\perp} = \mathcal{N}(A^T)^{\perp} \subseteq \mathcal{C}(A) = S \subseteq (S^{\perp})^{\perp}$$

implies $(S^{\perp})^{\perp} = S$, and in particular $\mathcal{N}(A^T)^{\perp} = \mathcal{C}(A)$.

Fundamental Theorem of Linear Algebra

Let A be an $m \times n$ matrix. Then

 $\dim \mathcal{C}(A) = \dim \mathcal{C}(A^T) = r, \quad \dim \mathcal{N}(A) = n - r \quad \text{and} \quad \dim \mathcal{N}(A^T) = m - r.$

Moreover,

$$\mathcal{C}(A)^{\perp} = \mathcal{N}(A^T), \quad \mathcal{C}(A^T)^{\perp} = \mathcal{N}(A), \quad \mathcal{C}(A) = \mathcal{N}(A^T)^{\perp} \text{ and } \mathcal{C}(A^T) = \mathcal{N}(A)^{\perp}.$$