## Orthogonal Complements

The orthogonal complement $S^{\perp}$ of a subspace $S$ of $\mathbf{R}^{m}$ is defined

$$
S^{\perp}=\left\{y \in \mathbf{R}^{m}: v \cdot y=0 \text { for all } v \in S\right\}
$$

If $v \in S$ then $y \cdot v=0$ for every $y \in S^{\perp}$. Thus $S \subseteq\left(S^{\perp}\right)^{\perp}$.
Let $A$ consist of columns that form a basis of $S$. Then $S=\mathcal{C}(A)$ and

$$
\begin{aligned}
\mathcal{C}(A)^{\perp} & =\left\{y \in \mathbf{R}^{m}: v \cdot y=0 \text { for all } v \in \mathcal{C}(A)\right\} \\
& =\left\{y \in \mathbf{R}^{m}: A x \cdot y=0 \text { for all } x \in R^{n}\right\} \\
& =\left\{y \in \mathbf{R}^{m}: x \cdot A^{T} y=0 \text { for all } x \in R^{n}\right\} \\
& =\left\{y \in \mathbf{R}^{m}: A^{T} y=0\right\}=\mathcal{N}\left(A^{T}\right)
\end{aligned}
$$

Given $v \in \mathcal{N}\left(A^{T}\right)^{\perp}$, consider the $m \times(n+1)$ matrix

$$
B=[A \mid v]
$$

Since $A^{T} y=0$ implies $v \cdot y=0$, then

$$
\begin{aligned}
\mathcal{N}\left(B^{T}\right) & =\left\{y \in \mathbf{R}^{m}: B^{T} y=0\right\} \\
& =\left\{y \in \mathbf{R}^{m}: A^{T} y=0 \text { and } v \cdot y=0\right\} \\
& =\left\{y \in \mathbf{R}^{m}: A^{T} y=0\right\}=\mathcal{N}\left(A^{T}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{dim} \mathcal{C}(A)=\operatorname{dim} \mathcal{C}\left(A^{T}\right) & =m-\operatorname{dim} \mathcal{N}\left(A^{T}\right) \\
& =m-\operatorname{dim} \mathcal{N}\left(B^{T}\right)=\operatorname{dim} \mathcal{C}\left(B^{T}\right)=\operatorname{dim} \mathcal{C}(B)
\end{aligned}
$$

Since $\mathcal{C}(A) \subseteq \mathcal{C}(B)$, then $\mathcal{C}(A)=\mathcal{C}(B)$. Therefore $v \in \mathcal{C}(A)$, and so $\mathcal{N}\left(A^{T}\right)^{\perp} \subseteq \mathcal{C}(A)$. Now

$$
\left(S^{\perp}\right)^{\perp}=\left(\mathcal{C}(A)^{\perp}\right)^{\perp}=\mathcal{N}\left(A^{T}\right)^{\perp} \subseteq \mathcal{C}(A)=S \subseteq\left(S^{\perp}\right)^{\perp}
$$

implies $\left(S^{\perp}\right)^{\perp}=S$, and in particular $\mathcal{N}\left(A^{T}\right)^{\perp}=\mathcal{C}(A)$.

## Fundamental Theorem of Linear Algebra

Let $A$ be an $m \times n$ matrix. Then

$$
\operatorname{dim} \mathcal{C}(A)=\operatorname{dim} \mathcal{C}\left(A^{T}\right)=r, \quad \operatorname{dim} \mathcal{N}(A)=n-r \quad \text { and } \quad \operatorname{dim} \mathcal{N}\left(A^{T}\right)=m-r
$$

Moreover,

$$
\mathcal{C}(A)^{\perp}=\mathcal{N}\left(A^{T}\right), \quad \mathcal{C}\left(A^{T}\right)^{\perp}=\mathcal{N}(A), \quad \mathcal{C}(A)=\mathcal{N}\left(A^{T}\right)^{\perp} \quad \text { and } \quad \mathcal{C}\left(A^{T}\right)=\mathcal{N}(A)^{\perp}
$$

