1. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 6 & 8 \\ -1 & 4 & 2 \\ -2 & 6 & 1 \end{bmatrix}$ and $v = \begin{bmatrix} 4 \\ 2 \\ 4 \end{bmatrix}$.

- (i) Compute 2A + B.
- (ii) Find Av.
- (iii) Compute ||v||.

2. Determine whether the following pairs of vectors are perpendicular.

(i) Is
$$\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$$
 perpendicular to $\begin{bmatrix} -1\\1\\-1 \end{bmatrix}$?
(ii) Is $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$ perpendicular to $\begin{bmatrix} -1\\0\\-1 \end{bmatrix}$?

3. True or false with a counterexample if false and a reason if true.

(i) If A is invertible then A^{-1} is invertible.

(ii) If A is invertible then A^2 is invertible.

4. Let
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

- (i) Find Av.
- (ii) Find A^2v .
- (iii) Find A^3v .
- 5. Write the system of linear equations given by

$$\begin{cases} x_1 + 2x_2 = 4\\ 2x_1 - x_2 = 3 \end{cases}$$

in the matrix form Ax = b. What is A? What is b?

6. Let
$$B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$
. Find B^{-1} .

7. Given the augmented matrix

$$\begin{bmatrix} 4 & 6 & 8 & | & 1 \\ 2 & 9 & -2 & | & 0 \\ 0 & 4 & 1 & | & 0 \end{bmatrix}$$

the row operation $r_2 - (1/2)r_1 \rightarrow r_2$ yields the augmented matrix

4	6	8	1	
0	6	-6	-1/2	
0	4	1	0	

- (i) Find the elementary matrix E corresponding to this row operation.
- (ii) What is E^{-1} ?

8. Let

$$A = \begin{bmatrix} 2 & 3 & 2 \\ 2 & 3 & 3 \\ 2 & 2 & 2 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix}.$$

Solve the system Ax = b. Find x.

9. Is it true that

[1	0	0]	[1	0	0]	[1	0	0]	[1	0	0
a	1	0	0	1	0	0	1	0	=	a	1	0
0	0	1	b	0	1	0	c	1_		b	c	1

for all values of a, b and c? If so explain why. If not find values of a, b and c for which there is inequality.

10. Let

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 1 \end{bmatrix}.$$

Factor A into LDU where L is lower triangular, U is upper triangular with ones on the diagonal and D is diagonal.

11. Let

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 2 & 4 & 8 & 16 & 32 & 66 \end{bmatrix}$$

Find the reduced row echelon form R of A.

12. Let

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 4 \\ 4 \\ 8 \end{bmatrix}$$

The nullspace of A is

$$\mathcal{N}(A) = \left\{ \begin{bmatrix} -1\\ -2\\ 1 \end{bmatrix} c : c \in \mathbf{R} \right\}.$$

One solution to Ax = b is

$$x = \begin{bmatrix} -1\\ -10\\ 5 \end{bmatrix}.$$

Find all solutions.

13. Let

$$A = \begin{bmatrix} 1 & 2 & 5 & 6 & 2 \\ 2 & 4 & 4 & 2 & 8 \\ 6 & 12 & 1 & 1 & -2 \\ 4 & 8 & -3 & -1 & -10 \end{bmatrix}.$$

The reduced row echelon form of A is

$$R = \begin{bmatrix} 1 & 2 & 0 & 0 & -1/2 \\ 0 & 0 & 1 & 0 & 7/2 \\ 0 & 0 & 0 & 1 & -5/2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

- (i) Find the rank of A.
- (ii) Find a basis for the nullspace $\mathcal{N}(A)$. What is the dimension dim $\mathcal{N}(A)$?
- (iii) Find a basis for the column space $\mathcal{C}(A)$. What is the dimension dim $\mathcal{C}(A)$?
- 14. Answer the following questions about linear independence, span and basis. Give a reason each of your answers.
 - (i) Are the vectors

$$\begin{bmatrix} 1\\3\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\3 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$

linearly independent?

(ii) Do the vectors
$$\begin{bmatrix} 1\\0 \end{bmatrix}$$
 and $\begin{bmatrix} 0\\1 \end{bmatrix}$ span the same space as $\begin{bmatrix} 2\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\5 \end{bmatrix}$?

(iii) Do the vectors

$$\begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$$

form a basis for \mathbf{R}^4 ?

15. True or false with a counterexample if false and a reason if true.

- (i) If A is any matrix, then $\mathcal{C}(A) = \mathcal{C}(A^T)$.
- (ii) If A is any $n \times m$ matrix, then $\dim \mathcal{C}(A) = \dim \mathcal{C}(A^T)$.
- (iii) If P is a permutation matrix, then $P^{-1} = P^T$.
- (iv) If A is an $n \times n$ invertible matrix, then $\mathcal{C}(A) = \mathcal{C}(A^{-1})$.

16. Let

$$A = \begin{bmatrix} 1 & -1 & -2 \\ 2 & 1 & 2 \\ 4 & 1 & 8 \end{bmatrix}.$$

Find a lower triangular matrix L and an upper triangular U such that LU = A.

17. Let
$$B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
. Find B^{-1} .

18. Let A = LU where

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solve the system

$$Ax = \begin{bmatrix} 0\\0\\1 \end{bmatrix}.$$

Find x.