Math 330 Exam 1 Review

1. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], B=\left[\begin{array}{ccc}3 & 6 & 8 \\ -1 & 4 & 2 \\ -2 & 6 & 1\end{array}\right]$ and $v=\left[\begin{array}{l}4 \\ 2 \\ 4\end{array}\right]$.
(i) Compute $2 A+B$.
(ii) Find $A v$.
(iii) Compute $\|v\|$.
2. Determine whether the following pairs of vectors are perpendicular.
(i) Is $\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$ perpendicular to $\left[\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right]$?
(ii) Is $\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$ perpendicular to $\left[\begin{array}{c}-1 \\ 0 \\ -1\end{array}\right]$?
3. True or false with a counterexample if false and a reason if true.
(i) If A is invertible then A^{-1} is invertible.
(ii) If A is invertible then A^{2} is invertible.
4. Let $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$ and $v=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
(i) Find $A v$.
(ii) Find $A^{2} v$.
(iii) Find $A^{3} v$.
5. Write the system of linear equations given by

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}=4 \\
2 x_{1}-x_{2}=3
\end{array}\right.
$$

in the matrix form $A x=b$. What is A ? What is b ?
6. Let $B=\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$. Find B^{-1}.

Math 330 Exam 1 Review

7. Given the augmented matrix

$$
\left[\begin{array}{ccc|c}
4 & 6 & 8 & 1 \\
2 & 9 & -2 & 0 \\
0 & 4 & 1 & 0
\end{array}\right]
$$

the row operation $r_{2}-(1 / 2) r_{1} \rightarrow r_{2}$ yields the augmented matrix

$$
\left[\begin{array}{ccc|c}
4 & 6 & 8 & 1 \\
0 & 6 & -6 & -1 / 2 \\
0 & 4 & 1 & 0
\end{array}\right]
$$

(i) Find the elementary matrix E corresponding to this row operation.
(ii) What is E^{-1} ?
8. Let

$$
A=\left[\begin{array}{lll}
2 & 3 & 2 \\
2 & 3 & 3 \\
2 & 2 & 2
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
3 \\
3 \\
2
\end{array}\right]
$$

Solve the system $A x=b$. Find x.
9. Is it true that

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
b & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & c & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
b & c & 1
\end{array}\right]
$$

for all values of a, b and c ? If so explain why. If not find values of a, b and c for which there is inequality.
10. Let

$$
A=\left[\begin{array}{ll}
1 & 4 \\
2 & 1
\end{array}\right]
$$

Factor A into $L D U$ where L is lower triangular, U is upper triangular with ones on the diagonal and D is diagonal.
11. Let

$$
A=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 1 \\
2 & 4 & 8 & 16 & 32 & 66
\end{array}\right]
$$

Find the reduced row echelon form R of A.
12. Let

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
4 \\
4 \\
8
\end{array}\right]
$$

The nullspace of A is

$$
\mathcal{N}(A)=\left\{\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right] c: c \in \mathbf{R}\right\}
$$

One solution to $A x=b$ is

$$
x=\left[\begin{array}{c}
-1 \\
-10 \\
5
\end{array}\right]
$$

Find all solutions.
13. Let

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 5 & 6 & 2 \\
2 & 4 & 4 & 2 & 8 \\
6 & 12 & 1 & 1 & -2 \\
4 & 8 & -3 & -1 & -10
\end{array}\right]
$$

The reduced row echelon form of A is

$$
R=\left[\begin{array}{ccccc}
1 & 2 & 0 & 0 & -1 / 2 \\
0 & 0 & 1 & 0 & 7 / 2 \\
0 & 0 & 0 & 1 & -5 / 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(i) Find the rank of A.
(ii) Find a basis for the nullspace $\mathcal{N}(A)$. What is the $\operatorname{dimension} \operatorname{dim} \mathcal{N}(A)$?
(iii) Find a basis for the column space $\mathcal{C}(A)$. What is the dimension $\operatorname{dim} \mathcal{C}(A)$?
14. Answer the following questions about linear independence, span and basis. Give a reason each of your answers.
(i) Are the vectors

$$
\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

linearly independent?
(ii) Do the vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ span the same space as $\left[\begin{array}{l}2 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 5\end{array}\right]$?
(iii) Do the vectors

$$
\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

form a basis for \mathbf{R}^{4} ?
15. True or false with a counterexample if false and a reason if true.
(i) If A is any matrix, then $\mathcal{C}(A)=\mathcal{C}\left(A^{T}\right)$.
(ii) If A is any $n \times m$ matrix, then $\operatorname{dim} \mathcal{C}(A)=\operatorname{dim} \mathcal{C}\left(A^{T}\right)$.
(iii) If P is a permutation matrix, then $P^{-1}=P^{T}$.
(iv) If A is an $n \times n$ invertible matrix, then $\mathcal{C}(A)=\mathcal{C}\left(A^{-1}\right)$.
16. Let

$$
A=\left[\begin{array}{ccc}
1 & -1 & -2 \\
2 & 1 & 2 \\
4 & 1 & 8
\end{array}\right]
$$

Find a lower triangular matrix L and an upper triangular U such that $L U=A$.
17. Let $B=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$. Find B^{-1}.
18. Let $A=L U$ where

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \quad \text { and } \quad U=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Solve the system

$$
A x=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Find x.

