Math 330 Homework 3

1. Circle the correct answer for the following multiple choice questions.
(i) Find the orthogonal complement of $\mathcal{C}(A)$.
(A) $\mathcal{N}(A)$
(B) $\mathcal{C}(A)$
(C) $\mathcal{N}\left(A^{T}\right)$
(D) $\mathcal{C}\left(A^{T}\right)$
(E) none of these
(ii) Find the orthogonal complement of $\mathcal{C}\left(A^{T}\right)$.
(A) $\mathcal{N}(A)$
(B) $\mathcal{C}(A)$
(C) $\mathcal{N}\left(A^{T}\right)$
(D) $\mathcal{C}\left(A^{T}\right)$
(E) none of these
(iii) Find $Q^{T} Q$ where Q is an orthogonal matrix.
(A) I
(B) 0
(C) A
(D) Q^{-1}
(E) none of these
(iv) Find an example of non-singular matrix $A \in \mathbf{R}^{n \times n}$ such that $A^{T} A \neq A A^{T}$.

Math 330 Homework 3
2. Let

$$
a=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

Project the vector b onto the subspace given by the span of a.
3. Let Q be the matrix with orthonormal columns given by

$$
Q=\frac{1}{\sqrt{10}}\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 2 \sqrt{2} & 1 \\
2 & -\sqrt{2} & 2
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Find the x which minimizes $\|Q x-b\|$.
4. Find an orthonormal basis for the space spanned by the vectors

$$
\left[\begin{array}{l}
7 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] .
$$

5. Let

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 5 & 6 & 7 \\
7 & 8 & 9 & 1 \\
1 & 2 & 3 & 4
\end{array}\right]
$$

Find $\operatorname{det} A$.
6. Let

$$
B=\left[\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 4 & 2
\end{array}\right]
$$

Find $\operatorname{det} B$.
7. Let A and B be 4×4 matrices. Suppose $\operatorname{det} A=2$ and $\operatorname{det} B=3$.
(i) Find $\operatorname{det}(-A)$.
(ii) Find $\operatorname{det}\left(A^{3} B\right)$.
(iii) Find $\operatorname{det}\left(B^{T}\right)$.
(iv) Find $\operatorname{det}\left(B^{-1}\right)$.
(v) Find $\operatorname{det}(A+A)$.
8. Let

$$
A=\left[\begin{array}{lll}
3 & 1 & 2 \\
2 & 3 & 1 \\
1 & 2 & 3
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Let B_{j} be the matrices formed according to Cramer's rule with the j-th column of A replaced by b. If

$$
\operatorname{det} B_{1}=18, \quad \operatorname{det} B_{2}=-18, \quad \text { and } \quad \operatorname{det} B_{3}=36
$$

then what is b ? Find b_{1}, b_{2} and b_{3}.

