- 1. Circle the correct answer for the following multiple choice questions.
 - (i) Find the orthogonal complement of $\mathcal{C}(A)$.
 - (A) $\mathcal{N}(A)$
 - (B) $\mathcal{C}(A)$
 - (C) $\mathcal{N}(A^T)$
 - (D) $\mathcal{C}(A^T)$
 - (E) none of these
 - (ii) Find the orthogonal complement of $\mathcal{C}(A^T)$.
 - (A) $\mathcal{N}(A)$
 - (B) $\mathcal{C}(A)$
 - (C) $\mathcal{N}(A^T)$
 - (D) $\mathcal{C}(A^T)$
 - (E) none of these
 - (iii) Find $Q^T Q$ where Q is an orthogonal matrix.
 - (A) I
 - (B) 0
 - (C) A
 - (D) Q^{-1}
 - (E) none of these
 - (iv) Find an example of non-singular matrix $A \in \mathbf{R}^{n \times n}$ such that $A^T A \neq A A^T$.

Math 330 Homework 3

2. Let

$$a = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} -1\\1\\-1\\1 \end{bmatrix}$$

Project the vector b onto the subspace given by the span of a.

3. Let Q be the matrix with orthonormal columns given by

$$Q = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & 0 & -1\\ 2 & 0 & -2\\ 1 & 2\sqrt{2} & 1\\ 2 & -\sqrt{2} & 2 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 1\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}.$$

Find the x which minimizes ||Qx - b||.

4. Find an orthonormal basis for the space spanned by the vectors

$$\begin{bmatrix} 7\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}.$$

5. Let

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 5 & 6 & 7 \\ 7 & 8 & 9 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

Find $\det A$.

6. Let

$$B = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 4 & 2 \end{bmatrix}$$

Find $\det B$.

Math 330 Homework 3

- 7. Let A and B be 4×4 matrices. Suppose det A = 2 and det B = 3.
 - (i) Find det(-A).
 - (ii) Find $det(A^3B)$.
 - (iii) Find $det(B^T)$.

(iv) Find det (B^{-1}) .

(v) Find det(A + A).

8. Let

$$A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

Let B_j be the matrices formed according to Cramer's rule with the *j*-th column of A replaced by b. If

 $\det B_1 = 18$, $\det B_2 = -18$, and $\det B_3 = 36$

then what is b? Find b_1 , b_2 and b_3 .