This set, called the zero subspace, also satisfies the conditions for a subspace.
Column Space and Null Space of a Matrix
Subspaces of \mathbb{R}^{n} usually occur in applications and theory in one of two ways. In both cases, the subspace can be related to a matrix.

The column space of a matrix A is the set $\operatorname{Col} A$ of all linear combinations of the
sauce as the range of f whore $f(x)=A x$.
If $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$, with the columns in \mathbb{R}^{m}, then $\operatorname{Col} A$ is the same as Span $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$. Example 4 shows that the column space of an $\boldsymbol{m} \times \boldsymbol{n}$ matrix is a subspace of \mathbb{R}^{m}. Note that $\operatorname{Col} A$ equals \mathbb{R}^{m} only when the columns of A span \mathbb{R}^{m}. Otherwise, $\operatorname{Col} A$ is only part of \mathbb{R}^{m}.
\qquad
\qquad
columns of A.
$\operatorname{col} A=\left\{A x: x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{m}$

$$
A x \in \mathbb{R}^{m}
$$ are in the domain

domain ...
range $f=\left\{f(x): x \in \mathbb{R}^{n}\right\}$
DEFINITION

DEFINITION " such that" $\begin{gathered} \\ \downarrow\end{gathered}$

The pivot columns of a matrix A form a basis for the column space of A.
algorithm for finding a basis.. 1 REP P PP FF E
 matrix the correspond to the pivots...

EXAMPLE Find a basis of the column space: $\operatorname{col} A=\left\{A_{x}: x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{n}$

Since $\operatorname{col} A$ is already describe as the span of the "columns of A " the all that's needed is to
identify which of those columns correspond to pivots

Suppose the $3^{\text {red }}, 5^{\text {th }}$ and $6^{\text {th }}$ columns were pivots...

$$
\text { Basis }=\left\{v_{3}, v_{5}, v_{6}\right\}
$$

$\operatorname{Col} A=\left\{B x: x \in \mathbb{R}^{3}\right\}$ where $B=\left[V_{3}\left|V_{5}\right| V_{6}\right]$
If I perform caus elicits on B to find the row echelon form

numbers are
the same as in
a. IG exactly the same columns as were in the pivot columns for the rowesdulon form of A.
What about a basis for

$$
\text { NuT } A=\left\{x \in \mathbb{R}^{n}: A x=0\right\}
$$

Example:

$$
A=\left[\begin{array}{ccc}
2 & 0 & -1 \\
4 & -3 & 2
\end{array}\right] \text { find a basis of NulA. }
$$

Elimination reps. $r_{2}<r_{2}-2 r_{1}$

$$
\left[\begin{array}{ccc}
2 & 0 & -1 \\
0 & -3 & 4
\end{array}\right]
$$

rescale the roots $r_{1} \leftarrow \frac{1}{2} r_{1}$

Solve by substitution

$$
\begin{array}{ll}
x_{2}-\frac{4}{3} x_{3}=0, & x_{2}=\frac{4}{3} x_{3} \\
x_{1}-\frac{1}{2} x_{3}=0, & x_{1}=\frac{1}{2} x_{3}
\end{array}
$$

Therefore

$$
x=\left[\begin{array}{c}
1 / 2 x_{3} \\
4 / 3 x_{3} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
4 / 3 \\
1
\end{array}\right] x_{3}
$$

Basis right here...

$$
N u \mid A=\left\{N x: x \in \mathbb{R}^{\prime}\right\} \text { where } N=\left[\begin{array}{c}
1 / 2 \\
4 / 3 \\
1
\end{array}\right] \text {. }
$$

We'll finish up chapter 2 next time and move on to chapter 3 and a discussion of determinants...

