Nonlinear Equations

1a. Consider the equation

$$
\begin{equation*}
x+\sin x=c . \tag{1}
\end{equation*}
$$

Use the intermediate value theorem to show that this equation has a solution for every real number c.
b. Let $h(x)=x+\sin x$. Show that $h^{\prime}(x)>0$ except at the isolated points $(2 n+1) \pi$ where n is an integer. Conclude that $h: \mathbf{R} \rightarrow \mathbf{R}$ is strictly increasing, and therefore, that equation (1) has exactly one solution x corresponding to each real number c.
c. Find the approximate solution x^{*} of equation (1) to machine precision for $c=3$ using the bisection method.
d. Let $\Phi(x)=c-\sin x$. Then $\Phi(x)=x$ if and only if x is a solution to equation (1). Let $c=3$ and recursively define $x_{n+1}=\Phi\left(x_{n}\right)$ where $x_{0}=c$. Does x_{n} converge to x^{*} ?
e. Define the errors $e_{n}=x_{n}-x^{*}$ where x^{*} is the best approximation found in part c and x_{n} are the approximations found in part d. If e_{n+1} is related to e_{n} by

$$
\left|e_{n+1}\right| \approx K\left|e_{n}\right|^{p}
$$

then the points $\left(\log \left|e_{n}\right|, \log \left|e_{n+1}\right|\right)$ should lie on a straight line with slope p. Note that p is called the order of convergence. Plot the points and find the order of convergence for the sequence x_{n} from part d.
f. Use Newton's method

$$
\Phi(x)=x-\frac{f(x)}{f^{\prime}(x)}=x-\frac{x+\sin x-c}{1+\cos x}
$$

with $c=3$ to compute another sequence x_{n} converging to x^{*}. Find the order of convergence for Newton's method.
g. [Extra Credit and for CS/Math 666] Use the bisection method to compute the solution x to equation (1) when $c=\pi$ starting with an initial bracket of $[3,4]$. Repeat starting with the initial bracket [3, 3.2]. Try the bracket $[3.1,4]$. Compute your approximations as accurately as possible. Are your answers the same given the different starting brackets? If not, are any correct? If not, what is the correct answer? Explain.

