Krylov Subspace Methods
1a. Consider the matrix defined by

$$
a_{i j}= \begin{cases}4 & \text { if } i=j \\ -1 & \text { if } i=j+1 \text { or } i+1=j \\ 0 & \text { otherwise } .\end{cases}
$$

Let $n=1000$ and write a Matlab program to find $A x$ for any vector $x \in \mathbf{R}^{n}$. Alternatively, read about sparse matrices in Matlab and a figure how to represent $A$ using a sparse matrix.
1 b . Let $b$ be the vector in $\mathbf{R}^{n}$ defined by $b_{i}=1 / i^{2}$ and define

$$
\mathcal{K}_{m}=\operatorname{span}\left\{b, A b, A^{2} b, \ldots, A^{m-1} b\right\} .
$$

Let $x_{m} \in \mathcal{K}_{m}$ be a vector which minimizes $\|A x-b\|$ among all possible vectors in $\mathcal{K}_{m}$. Compute $\left\|A x_{m}-b\right\|$ for $m=1,2, \ldots, 10$.
1c. Let $x^{*}$ be the best approximation to $A x=b$ found in step 1 b . Define the residual $r=b-A x^{*}$ and let $y^{*}$ be the point in

$$
\operatorname{span}\left\{r, A r, A^{2} r, \ldots, A^{9} r\right\}
$$

which minimizes $\|A y-r\|$. Find the norm of the error $\left\|A\left(x^{*}+y^{*}\right)-b\right\|$ for the iteratively improved solution $x^{*}+y^{*}$ to $A x=b$.
1d. Let $n=100$ and repeat step 1 b for the matrix $A$ and vector $b$ given by $A=r a n d n(100)$ and $b=r a n d(100,1)$. Does the Krylov subspace method of minimum residuals work to solve $A x=b$ in this case? Use the Matlab command plot (eig(A), '+') to plot the eigenvalues of $A$.
1e. Using the matrix $A$ from part d define $B=A+20 I$. Plot the eigenvalues of $B$. How are they related to the eigenvalues of $A$ ? Does the Krylov subspace method work to solve $B z=b$ ? What is the relation between $z$ and the solution $x$ of $A x=b$ ? Can you find $x$ from $z$ without inverting $A$ ? 1f. [Extra Credit and for CS/Math 666] Repeat the steps 1a-c for the $5000 \times 5000$ matrix defined by

$$
a_{i j}= \begin{cases}8 & \text { if } i=j \\ -1 & \text { if } i=j+1 \text { or } i+1=j \\ -1 / 2 & i=2 j+1 \text { or } 2 i+1=j \\ -1 / 4 & i=3 j+2 \text { or } 3 i+2=j \\ 0 & \text { otherwise } .\end{cases}
$$

Print using format long the 1 -st component and the 1000 -th component of the vectors $x^{*}$ and $y^{*}$ for reference.

