
Math/CS 466/666 Lecture 07

Some Calculus Theorems

We have spent some time understanding the errors involved when approximating real
numbers on a computer. We shall also need to approximate functions as well. In 1885
Weierstrass proved that any continuous function on an interval [a, b] could be approxi-
mated arbitrarily well by a polynomial of sufficiently high degree. In particular, given any
continuous function f : [a, b] → R and ǫ > 0, then there exists a polynomial p such that

|p(x) − f(x)| < ǫ for all x ∈ [a, b].

This theorem motivates the use of polynomials to represent unknown functions in the
algorithms we shall be developing for the computer.

Let us state four important Calculus theorems that we shall use to understand errors
related to approximating functions in our algorithms.

Intermediate Value Theorem. Let f : [a, b] → R be continuous. If f(a) and f(b) have
opposite signs, then there exists c ∈ (a, b) such that f(c) = 0.

Mean Value Theorem 1. Let f be continuous on [a, b] and continuously differentiable
on (a, b). Then there exists c ∈ (a, b) such that f(b) − f(a) = (b − a)f ′(c).

Mean Value Theorem 2. Let f and g be continuous on [a, b] and continuously differen-
tiable on (a, b). Then there exists c ∈ (a, b) such that (f(b)−f(a))g′(c) = (g(b)−g(a))f ′(c).

Taylor’s Theorem. Let f be continuous on [a, b] and n + 1 times continuously differen-
tiable on (a, b). Then there exists c ∈ (a, b) such that

f(b) = f(a) + (b − a)f ′(a) +
(b − a)2

2!
f ′′(a) + · · ·

+
(b − a)n

n!
f(n)(a) +

(b − a)(n+1)

(n + 1)!
f(n+1)(c).

We have already used the intermediate value theorem to provide estimates of the
errors in the bisection method. We now discuss other methods for solving f(x) = 0.

Let me tell you a story which might not be true: Once upon a time I was taking an
introductory algebra class and the teacher asked me to solve the quadratic equation

x2 + 100x + 1 = 0.

I tried to solve it as

100x = −1− x2 and therefore x = −
1 + x2

100
.

The teacher, who was trying to teach factoring and the quadratic formula, marked my
solution wrong.

In introductory algebra, that is the end of the story, but in numerical methods the
transformation of the original problem f(x) = 0 into the form x = Φ(x) can be used as an
iterative method for approximating x. Namely, let x0 be some initial guess and define

x1 = Φ(x0), x2 = Φ(x1), . . . xn+1 = Φ(xn).
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If xn converges as n → ∞ then we obtain

α = Φ(α) where α = lim
n→∞

xn.

Therefore x = α is a solution for f(x) = 0. This is demonstrated by

Example 6a
>> format long

>> phi=inline(’-(1+x*x)/100’);

>> x=0.0;

>> x=phi(x)

x = -0.0100000000000000

>> x=phi(x)

x = -0.0100010000000000

>> x=phi(x)

x = -0.0100010002000100

>> x=phi(x)

x = -0.0100010002000500

One is not always so lucky as in Example 6a. The iteration might not converge.
However, if it does, then we have found a solution. We now use the first mean value
theorem to find conditions under which the iterative scheme xn+1 = Φ(xn) converges.

Let α be the solution such that Φ(α) = α and let x0 be an initial guess of α. Provided
that Φ is differentiable, then the mean value theorem implies for each approximation xn

that there exists cn between α and xn such that Φ(xn)−Φ(α) = (xn −α)Φ′(cn). Therefore

x1 − α = Φ(x0) − Φ(α) = (x0 − α)Φ′(c0)

x2 − α = Φ(x1) − Φ(α) = (x1 − α)Φ′(c1)

...

xn+1 − α = Φ(xn) −Φ(α) = (xn − α)Φ′(cn)

Substituting the first line into the second, the second into the third, and so forth, we obtain

x1 − α = (x0 − α)Φ′(c0)

x2 − α = (x0 − α)Φ′(c0)Φ
′(c1)

...

xn+1 − α = (x0 − α)Φ′(c0)Φ
′(c1) · · ·Φ

′(cn).

Therefore, if |Φ′(x)| ≤ λ < 1 for all x such that |x − α| ≤ |x0 − α|, then

|xn+1 − α| ≤ |x0 − α|λn → 0 as n → ∞.

Note that this argument not only proves that xn converges, but provides an estimate
on the rate of convergence.
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