
Math/CS 466/666 Lecture 19

Statistical Interpretation of Least Squares

We consider experimental data with errors that are distributed according to the normal
distribution. From the theory of probability and statistics we have

Central Limit Theorem. Let Xn be a sequence of independent identically distributed
random variables with mean c and variance σ2 < ∞. Then

X1 + X2 + · · · + Xn − nc

σ
√

n

converges in distribution to a normal random variable with mean 0 and variance 1.

This theorem motivates the use of the normal distribution to model measurement errors
which are supposed to result from the sum of many little errors.

Mathematically, we have a set of data points yi that are equal to f(xi) plus an inde-
pendent normally distributed error with mean 0 and variance σ2

i . Physically, f represents
the phenomenon we are trying to observe, mean 0 implies there are no systematic er-
rors, different values of σ2

i indicate that some measurements are more precise than others,
and independence implies that one measurement doesn’t affect the next. Under these as-
sumptions, our measurements yi may be represented by the normally distributed random
variables Yi = f(xi) + Ei with mean f(xi) and variance σ2

i .

Recall that if E is a normally distributed random variable with norm 0 and variance
σ2, then the probability that E ∈ (a, b) is

P
{

E ∈ (a, b)
}

=

∫ b

a

1

σ
√

2π
exp

(−t2

2σ2

)

dt

Therefore,

P
{

Yi ∈ (a, b)
}

=

∫ b

a

1

σi

√
2π

exp
(−(t − f(xi))

2

2σ2

i

)

dt

Generally, we suppose there is a parametrized family of functions Fc such that f = Fc

for some parameter c. Our task is to determine c from the measurements yi. In particular,
we will consider the case where Fc is the linear model

Fc(x) =
m

∑

j=1

cjφj(x)

with functions φi : R → R fixed.

Since there are errors in the measurements, we can not hope to find the exact value of
c for which f = Fc. In fact, for any choice of c there is chance that the data points yi are
a specific realization of the random variables Yi = Fc(xi) + Ei. To overcome this problem,
we look for the value of c for which the data points yi were most likely to have come from
the model Fc(xi) + Ei. In statistics this is called the maximum likelihood estimator for c.
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Since the Yi’s are independent, their joint probability density is the product of the
probability density functions for each Yi. Therefore

P{Y ∈ A} =

∫

A

n
∏

i=1

(

1

σi

√
2π

exp
(−(ti − Fc(xi))

2

2σ2

i

)

)

dnt

=

∫

A

1

(Πiσi)(
√

2π)n
exp

(

− 1

2

n
∑

i=1

( ti − Fc(xi)

σi

)2
)

dnt

where A ⊆ Rn and

Y =





Y1

...
Yn



 and t =





t1
...
tn



 .

Thus, maximizing the probability that Yi is in a small neighborhood of yi is the same
as maximizing the probability density function

1

(Πiσi)(
√

2π)n
exp

(

− 1

2

n
∑

i=1

(yi − Fc(xi)

σi

)2
)

,

or equivalently minimizing

χ2 =
n

∑

i=1

(yi − Fc(xi)

σi

)2

.

Denoting

Ã =









φ1(x1)/σ1 φ2(x1)/σ1 . . . φm(x1)/σ1

φ1(x2)/σ2 φ2(x2)/σ2 . . . φm(x2)/σ2

...
...

. . .
...

φ1(xn)/σn φ2(xn)/σn . . . φm(xn)/σn









and ỹ =









y1/σ1

y2/σ2

...
yn/σn









,

we find that χ2 = ‖Ãc− ỹ‖2

2
where Ãc = ỹ is a over determined system of linear equations

with the unknown c. Numerically, we use the reduced QR-decomposition Ã = Q̃1R̃1 to
find the c which minimizes ‖Ãc − ỹ‖2 by solving R̃1c = Q̃T

1
ỹ.

In Matlab solving a least squares problem is even easier. Suppose Ã is an n × m
matrix and ỹ is an n vector where n > m. If Ã and ỹ are already in memory, then

Matlab Example 19a
>> c=Atilde\ytilde

c =

7.43796398057002

-13.81315998713759

-4.87320678928050

1.95347713954574

gives the least squares solution to the over determined problem Ac = y.
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