
Introduction to Computing Part II

In this lab you will write a subroutine, plot your output
and learn how to automatically regenerate the plot.

Last week you logged in, created a subdirectory, used an editor to write a
program, compiled the program and ran it. The commands used were

mkdir — make directories

ls — list directory contents

cd — change working directory

pwd — print name of current/working directory

gedit — text editor for the GNOME Desktop

gcc — GNU project C and C++ compiler

We will use these commands again in this lab while introducing new com-
mands as needed.

Please log into your workstation. Hopefully all problems with UNR
netids and passwords have been resolved since last time. If you still can’t
log in, this is an emergency. Please contact me at ejolson@unr.edu to set
up an appointment to get this problem addressed.

In order to keep our files organized, let’s start by making a new subdi-
rectory for the work we do today. Please open a terminal window and enter
the following commands.

netid@hostname:~$ cd
netid@hostname:~$ ls
lab01
netid@hostname:~$ mkdir lab02
netid@hostname:~$ ls
lab01 lab02
netid@hostname:~$ cd lab02
netid@hostname:~/lab02$ pwd
/nfs/home/netid/lab02

Now copy the program from last week into the new directory.

netid@hostname:~/lab02$ cp ../lab01/main.c .
netid@hostname:~/lab02$ ls
main.c

The copy command always has a source followed by destination. In our
case, the destination is . which denotes the current working directory.

1

Creating a Makefile

Before proceeding, let’s check that the C source code in main.c from last
week still works. We will do this by compiling the code and then running
the executable to check that the output is as expected. As a program is
developed it will be compiled many times. We will use the make utility to
automate this task. This utility relies on a file named Makefile that we
will now create using gedit with

netid@hostname:~/lab02$ gedit Makefile &

Please remember to include the trailing & on the above line. This will allow
us to use the terminal window while the editor is still open.

Before proceding it is unfortunately necessary to have a discussion on
the difference between a tab character and a space character in the ASCII
character set. The tab is ASCII code 9 whereas the space is ASCII code 32.
Although they look the same, these two characters have different meanings
in a Makefile. Even worse, some editors automatically convert spaces to
tabs or tabs to spaces. To make sure gedit is configured to process tabs
properly, open

Edit → Preferences → Editor

and make sure Insert spaces instead of tabs is not selected. You may also
want to change Tab width to 4, which is the width used in the original book
by Kernighan and Ritchie on C programming.

Now, edit Makefile so it contains

1 main: main.c

2 gcc -O2 -std=gnu99 -o main main.c -lm

Here, the whitespace that appears before gcc must be a tab and not a
series of spaces. Note that if you set Tab width to 8 in gedit, the same
file would look like

1 main: main.c

2 gcc -O2 -std=gnu99 -o main main.c -lm

The compiler command is longer than the one we used last week. The
additional options are described below.

-O2 Tells the compiler to perform level 2 optimizations when gen-
erating the executable. This is often important for numerical

2

codes. Data flow analysis eliminates unnecessary computation
while register mapping and vectorization yield the efficient se-
quencing of hardware floating point instructions.

-o main Specifies that the name of the resulting executable will be
main rather than the default a.out. If you want to impress
your neighbor with your historical knowledge, please take a
moment to explain what the a in a.out originally signified.

It should now be possible to compile the program by typing

netid@hostname:~/lab02$ make

gcc -O2 -std=gnu99 -o main main.c -lm

If you get the error

netid@hostname:~/lab02$ make

cc main.c -o main

main.c: In function main:

main.c:5:5: error: for loop initial declarations are only allo

wed in C99 mode

main.c:5:5: note: use option -std=c99 or -std=gnu99 to compile

your code

make: *** [main] Error 1

then you did not take care of the tab character as requested. Please delete
the spaces before gcc in Makefile and insert a proper tab character using
the tab key on the computer keyboard. Save the file and try again.

The resulting execuatable should be called main and you can run it
using the following sequence of commands.

netid@hostname:~/lab02$ ls

Makefile main main.c

netid@hostname:~/lab02$./main

x erf(x)

0.1 1.124629160183e-01

0.2 2.227025892105e-01

0.3 3.286267594591e-01

0.4 4.283923550467e-01

0.5 5.204998778130e-01

0.6 6.038560908479e-01

0.7 6.778011938374e-01

0.8 7.421009647077e-01

0.9 7.969082124228e-01

1 8.427007929497e-01

3

Some Mathematical Simplifications

In the next section we will code a subroutine to compute the sum

2
√
π

n
∑

k=0

(−1)k

k!(2k + 1)
x2k+1

where n is a large positive integer. It is tempting to translate this sum
directly into a loop, however, this does not result in an efficient or accurate
calculation. Instead define

ak =
(−1)k

k!(2k + 1)
and observe that

ak

ak−1

= −
2k − 1

k(2k + 1)

so that

a0 = 1,
a1

a0
=

−1

3
,

a2

a1
=

−3

10
and

a3

a2
=

−5

21
.

Therefore

3
∑

k=0

(−1)k

k!(2k + 1)
x2k+1 = a0x+ a1x

3 + a2x
5 + a3x

7

= a0x+ a1x
3 + a2x

5

(

1 +
a3

a2
x2

)

= a0x+ a1x
3

(

1 +
a2

a1
x2

(

1 +
a3

a2
x2

))

= a0x

(

1 +
a1

a0
x2

(

1 +
a2

a1
x2

(

1 +
a3

a2
x2

)))

= x

(

1−
1

3
x2

(

1−
3

10
x2

(

1−
5

21
x2

)))

.

The above pattern can evidently be extended for any length sum. Working
from the inner to the outer parenthesis we obtain that

n
∑

k=0

(−1)k

k!(2k + 1)
x2k+1 = xσ1

where
σn+1 = 1 and σk = 1−

ak

ak−1

x2σk+1

for k = 1, . . . , n. We now write C code to implement this calculation.

4

Writing the Subroutine

The C code for a subroutine myerf which computes our sum approximation
to the standard error function may be written as

double myerf(double x,int n){

double xx=x*x, sigma=1;

for(int k=n;k>=1;k--){

sigma=1-(2*k-1)*xx*sigma/(k*(2*k+1));

}

return x*sigma*2/sqrt(M_PI);

}

This routine contains a loop which evaluates the σk in reverse order to
work from the inner to the outer parenthesis in our derivation. Note also
the division by sqrt(M_PI) at the end. The constant M_PI is defined in
math.h to be as close to the mathematical constant π as machine precision
allows. Let’s add this routine to our program.

In order to load main.c into your gedit session type the following in
the terminal window.

netid@hostname:~/lab02$ gedit main.c &

After a certain amount of typing the final program should read as

1 #include <stdio.h>

2 #include <math.h>

3 double myerf(double x,int n){

4 double xx=x*x, sigma=1;

5 for(int k=n;k>=1;k--){

6 sigma=1-(2*k-1)*xx*sigma/(k*(2*k+1));

7 }

8 return x*sigma*2/sqrt(M_PI);

9 }

10 int main(){

11 printf("%5s %20s %20s\n","x","erf(x)","myerf(x)");

12 for(int i=0;i<=10;i++){

13 double x=i/10.0;

14 printf("%5g %20.12e %20.12e\n", x, erf(x), myerf(x,7));

15 }

16 return 0;

17 }

Type make to compile it. If there are errors please fix them until an
executable is generated. The output of the program should be

5

x erf(x) myerf(x)

0 0.000000000000e+00 0.000000000000e+00

0.1 1.124629160183e-01 1.124629160183e-01

0.2 2.227025892105e-01 2.227025892105e-01

0.3 3.286267594591e-01 3.286267594591e-01

0.4 4.283923550467e-01 4.283923550464e-01

0.5 5.204998778130e-01 5.204998778008e-01

0.6 6.038560908479e-01 6.038560905789e-01

0.7 6.778011938374e-01 6.778011901864e-01

0.8 7.421009647077e-01 7.421009298672e-01

0.9 7.969082124228e-01 7.969079584713e-01

1 8.427007929497e-01 8.426992967307e-01

Plotting the Output

The plotting program gnuplot was created in 1986 by Williams and Kelley
for producing publication quality graphics. The program is open source and
available on almost all types of computers; however, despite it’s name it is
not part of the GNU project. We first modify line 11 of our program to
prefix the table heading with a # so that gnuplot will skip that line when
reading the data.

11 printf("#%4s %20s %20s\n","x","erf(x)","myerf(x)");

To compile, execute and store the output into the file myerf.dat type the
following into your terminal window.

netid@hostname:~/lab02$ make

gcc -O2 -o main -std=gnu99 main.c -lm

netid@hostname:~/lab02$./main >myerf.dat

Now start gnuplot in interactive mode.

netid@hostname:~/lab02$ gnuplot

G N U P L O T

Version 4.6 patchlevel 0 last modified 2012-03-04

Build System: Linux i686

Copyright (C) 1986-1993, 1998, 2004, 2007-2012

Thomas Williams, Colin Kelley and many others

gnuplot home: http://www.gnuplot.info

faq, bugs, etc: type "help FAQ"

immediate help: type "help" (plot window: hit ’h’)

6

Terminal type set to ’wxt’

gnuplot> _

The prompt gnuplot> means that program is waiting for a plotting com-
mand. To see a plot of the data for myerf type the following:

gnuplot> plot "myerf.dat" using 1:3

This plots the first and third columns in the myerf.dat file.
We’ll finish by creating a plot script that superimposes the data points

for myerf on a line graph of erf and writes the output as an encapsulated
postscript file which can be included in a report or displayed on the screen.
Exit the gnuplot program to get back to the terminal prompt.

gnuplot> exit

netid@hostname:~/lab02$ _

Use gedit to create the file myerf.plt containing the lines

1 set terminal postscript eps font "Courier-Bold"

2 set output "myerf.eps"

3 set key bottom

4 set size 0.7,0.7

5 plot "myerf.dat" using 1:3 pt 7 ti "myerf", \

6 "" using 1:2 with lines ti "erf"

This script contains the same plotting command as before along with some
additional options for better formatting.

Line 1: The output is encapsulated postscript.

2: Specify where the output will be written.

3: Place the key at the bottom so it is out of the way.

4: Setting the graph size smaller has the relative effect of making the
text and labels appear larger.

5: The option pt 7 means use point type 7 which is a filled-in circle.
The line ends with \ to continue plotting on the next line.

6: The filename "" indicates to read the file myerf.dat again for
plotting different data.

Process the script and view the resulting graph using the commands

7

netid@hostname:~/lab02$ gnuplot <myerf.plt

netid@hostname:~/lab02$ evince myerf.eps &

Again pay attention to the & at then end of second command. The plot
should look like

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

myerf
erf

Notice that the data points for myerf visually lie on the line representing
the built-in function erf.

Automating Everything

Some of you may have used integrated development environments that allow
the editing, debugging and execution of a program with the click of a mouse.
You may also have experience with interactive plotting facilities that allow
the visual appearance of a plot to be modified with a mouse. Mouse driven
programs can be fun, but they are often difficult to integrate together as
components in a larger automated system. The tools we have used are not
mouse driven; however, they are easy to automate.

In this last section we add additional rules to our Makefile to auto-
mate the generation of the final plot. We will set things up so that

1. A new plot myerf.eps is generated every time myerf.plt

is changed or myerf.dat is updated.

2. The output file myerf.dat is updated every time a new ex-
ecutable main is generated.

3. A new executable main is generated every time the program
main.c is changed.

8

Our Makefile already contains a rule to compile the program main.c. We
will add two additional rules to the file.

1 myerf.eps: myerf.plt myerf.dat

2 gnuplot <myerf.plt

3

4 myerf.dat: main

5 ./main >myerf.dat

6

7 main: main.c

8 gcc -O2 -o main -std=gnu99 main.c -lm

Remember there is a tab character at the beginning of lines 2, 5 and 8 above.
Although a sequence of spaces visually look the same as a tab character,
the make program interprets them differently.

Each rule is written in two parts. The first part contains a colon and
the second part begins with a tab character. Just before the colon is the
target, which is what the rule will make. Right after the colon is the list
of files needed to make the target. The line beginning with a tab character
then specifies the command needed to make the target.

Let’s change main.c so the loop counts up to 20 and then use make

to automatically generate a new graph. Edit line 12 so it reads

12 for(int i=0;i<=20;i++){

Save the file, return to the terminal window and type make to apply the
rules for updating the graph.

netid@hostname:~/lab02$ make

gcc -O2 -o main -std=gnu99 main.c -lm

./main >myerf.dat

gnuplot <myerf.plt

Automatically the program was first compiled, then it was run, and finally
the plot was generated. If you still have evince running, you will notice
that the plot now looks like

9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

myerf
erf

For larger values of x the filled-in circles representing myerf no longer
lie on the dashed line representing erf. This indicates significant error in
our approximation. This can be remedied by taking n larger so that more
terms are used in the Taylor expansion; however, if x = 15 the function
myerf gives the wrong answers no matter how large we choose n. This is
because the alternating addition and subtraction of large numbers in the
Taylor series results in numerical loss of precision when x is large. Since
erf(x) ≈ 1 when x is large, then it is better to work with erfc(x) = 1−erf(x)
when x is large. We will not pursue this direction of study here.

10

