Three Stage Runge-Kutta Methods

1. Let $y(t)$ be the exact solution to the initial value problem

$$
y^{\prime}=f(t, y), \quad y(0)=y_{0} .
$$

Suppose $y(t)$ and its derivatives are bounded for all $t \in[0, T]$. Given $n \in \mathbf{N}$ define $t_{i}=i h$ where $h=T / n$. Let y_{i} be the approximation of $y\left(t_{i}\right)$ given by the Shu-Osher TVD Runge-Kutta scheme

0			
1	1		
$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	
	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{2}{3}$

Prove $y\left(t_{1}\right)=y_{1}+\mathcal{O}\left(h^{4}\right)$ to show this a third order method.
2. Use the Shu-Osher TVD Runge-Kutta scheme to approximate the solution to

$$
y^{\prime}=y^{2} \cos t, \quad y(0)=0.8
$$

on the interval $[0,8]$ for $n=50$. Graph your approximation.
3. Verify that the exact solution to this equation is

$$
y(t)=\frac{y_{0}}{1-y_{0} \sin t} .
$$

4. Let y_{n} be the approximation of $y(8)$ obtained by the Shu-Osher TVD RungeKutta scheme using n equal steps of size $h=8 / n$. Graph $\log \left|y_{n}-y(8)\right|$ versus $\log h$ to verify the order of convergence found in part 1 numerically.
5. [Extra Credit and Math/CS 666] The classical Runge-Kutta scheme and the Nystrom Runge-Kutta schemes are given by

0			
$\frac{1}{2}$	$\frac{1}{2}$		
1	-1	2	
	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$

			0	
and	$\frac{2}{3}$	$\frac{2}{3}$		
	$\frac{2}{3}$	0	$\frac{2}{3}$	
		$\frac{1}{4}$	$\frac{3}{8}$	$\frac{3}{8}$

respectively. Let z_{n} be the approximation of $y(8)$ obtained from the classical RK scheme and w_{n} be obtained from the Nystrom RK scheme using n equal steps of size $h=8 / n$. Compare $\log \left|z_{n}-y(8)\right|$ and $\log \left|w_{n}-y(8)\right|$ to the values of $\log \left|y_{n}-y(8)\right|$ for $n=50$ and $n=100$. Which scheme is preferrable when solving the equation in part 2 ?

