Three Stage Runge–Kutta Methods

1. Let y(t) be the exact solution to the initial value problem

$$y' = f(t, y), \qquad y(0) = y_0.$$

Suppose y(t) and its derivatives are bounded for all $t \in [0, T]$. Given $n \in \mathbf{N}$ define $t_i = ih$ where h = T/n. Let y_i be the approximation of $y(t_i)$ given by the Shu–Osher TVD Runge–Kutta scheme

Prove $y(t_1) = y_1 + \mathcal{O}(h^4)$ to show this a third order method.

2. Use the Shu–Osher TVD Runge–Kutta scheme to approximate the solution to

$$y' = y^2 \cos t, \qquad y(0) = 0.8$$

on the interval [0, 8] for n = 50. Graph your approximation.

3. Verify that the exact solution to this equation is

$$y(t) = \frac{y_0}{1 - y_0 \sin t}$$

- 4. Let y_n be the approximation of y(8) obtained by the Shu–Osher TVD Runge– Kutta scheme using n equal steps of size h = 8/n. Graph $\log |y_n - y(8)|$ versus $\log h$ to verify the order of convergence found in part 1 numerically.
- 5. [Extra Credit and Math/CS 666] The classical Runge–Kutta scheme and the Nystrom Runge–Kutta schemes are given by

respectively. Let z_n be the approximation of y(8) obtained from the classical RK scheme and w_n be obtained from the Nystrom RK scheme using n equal steps of size h = 8/n. Compare $\log |z_n - y(8)|$ and $\log |w_n - y(8)|$ to the values of $\log |y_n - y(8)|$ for n = 50 and n = 100. Which scheme is preferrable when solving the equation in part 2?