Two-point Boundary Value Problems

1. Let $A \in \mathbf{R}^{n \times n}$ be a weakly diagonally dominant matrix with entries $a_{i j}$ that satisfies

$$
\left|a_{i i}\right| \geq \sum_{j \neq i}\left|a_{i j}\right| \quad \text { for } \quad i=1, \ldots, n
$$

with strict inequality holding for at least one i.
(i) Suppose $A x=0$ for some $x \in \mathbf{R}^{n}$. Prove that

$$
\left|a_{i i} x_{i}\right| \leq \sum_{j \neq i}\left|a_{i j}\right|\left|x_{j}\right| \quad \text { for } \quad i=1, \ldots, n
$$

(ii) Let $\mu=\max \left\{\left|x_{j}\right|: j=1, \ldots, n\right\}$ and choose i_{0} so that $\left|x_{i_{0}}\right|=\mu$. Show

$$
\left|a_{i i} x_{i}\right| \geq \sum_{j \neq i}\left|a_{i j}\right|\left|x_{j}\right| \quad \text { for } \quad i=i_{0}
$$

(iii) Show that $\left|x_{j}\right|=\mu$ for every j such that $a_{i_{0} j} \neq 0$.
(iv) Show that if every element of A is non-zero then A is invertible.
(v) Show, even if some elements of A are zero, that if the upper and lower diagonals $a_{i+1, i} \neq 0$ and $a_{i, i+1} \neq 0$ for $i=1, \ldots, n-1$ then A is invertible.
2. It is known that if $|p(x)| \leq R$ and $q(x) \leq 0$ for $x \in[a, b]$ then the two-point boundary value problem

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x) \quad \text { where } \quad y(a)=A, \quad y(b)=B
$$

has a unique solution. Let $h=(b-a) / m$ and define $x_{k}=a+k h$. The matrix

$$
\tilde{L}=\left[\begin{array}{ccccc}
a_{1} & c_{1} & 0 & \cdots & 0 \\
b_{1} & a_{2} & c_{2} & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & b_{m-3} & a_{m-2} & c_{m-2} \\
0 & \cdots & 0 & b_{m-2} & a_{m-1}
\end{array}\right]
$$

where $a_{k}=-2+h^{2} q\left(x_{k}\right), b_{k-1}=1-h p\left(x_{k}\right) / 2$ and $c_{k}=1+h p\left(x_{k}\right) / 2$ comes from the finite difference approximation

$$
\frac{y_{k+1}-2 y_{k}+y_{k-1}}{h^{2}}+p\left(x_{k}\right) \frac{y_{k+1}-y_{k-1}}{2 h}+q\left(x_{k}\right) y_{k}=f\left(x_{k}\right) .
$$

(i) Show that if $h R<2$ then \tilde{L} is invertible and conclude that the finite difference approximation also has a unique solution.
3. Take $q(x)=0, a=0, b=12$ and choose $p(x), f(x), A$ and B according to your UNR network identification from the table

netid	$p(x)$	$f(x)$	A	B
abelizario	$-\sin 2 x$	1	2	5
ablandino	$-\sin 2 x$	0	1	5
arobards	$\cos 2 x$	0	3	1
austinchapman	$-\cos 2 x$	1	3	2
beaus	$\sin 2 x$	-1	4	3
bryanwolf	$-\sin 2 x$	-1	1	0
daberasturi	$\sin x$	-1	2	0
ecoats	$-\sin 2 x$	0	1	5
eguzman	$\sin 2 x$	0	1	3
gharper	$-\sin 2 x$	-1	5	2
ipierce	$-\cos 2 x$	0	4	3
isodhi	$-\cos 2 x$	1	2	1
jchou	$\sin x$	0	5	0
jdardis	$-\sin x$	1	3	1
jganska	$\sin x$	0	0	6
jludwig	$-\sin 2 x$	1	5	1
jmei	$-\sin 2 x$	0	3	1
jmvolk	$\sin x$	0	4	3
josephlward	$\cos 2 x$	1	5	2
joyd	$-\sin x$	0	4	1
kgilgen	$-\cos 2 x$	0	0	4
lbrauner	$-\cos 2 x$	-1	1	4
lforbes	$\sin 2 x$	1	4	2
marcmiller	$-\cos 2 x$	0	5	3
mchapman	$-\cos 2 x$	1	4	2
michaelap	$-\cos 2 x$	1	1	2
mitchellmartinez	$-\cos x$	0	5	0
mkarr	$-\sin x$	1	1	3
pdepolo	$-\sin x$	-1	1	2
pmilham	$-\cos 2 x$	-1	2	3
pwhite	$-\sin 2 x$	0	0	6
rjohannsen	$-\cos x$	1	5	5
ryleyh	$\cos x$	-1	2	4
scendejas	$\cos 2 x$	-1	1	3
shaylam	$\cos 2 x$	-1	4	0
sshores	$\sin 2 x$	-1	5	0

(i) Use the finite difference method to solve the boundary value problem. Graph your solution and find an approximation of $y(6)$ good to 5 decimal digits.
(ii) Use the shooting method with RK4 to solve the boundary value problem. Graph your solution and find an approximation of $y(6)$ good to 5 decimal digits.
4. [Extra Credit and Math/CS 666] Consider the two-point boundary value problem

$$
y^{\prime \prime}=\mathcal{F}\left(x, y, y^{\prime}\right) \quad \text { where } \quad y(a)=A, \quad y(b)=B
$$

In general, this problem may have many solutions or none. The shooting method treats this second order boundary value problem as a first-order initial value problem by defining $v=y^{\prime}$ to obtain the system

$$
\left\{\begin{array}{l}
y^{\prime}=v \\
v^{\prime}=\mathcal{F}(x, y, v)
\end{array}\right.
$$

with initial conditions $y(a)=A$ and $v(a)=A^{\prime}$ where A^{\prime} is unknown. In general, solutions to such initial value problems are unique, however, there may be many choices for A^{\prime} such that the resulting solution satisfies $y(b)=B$.
(i) Suppose $\mathcal{F}(x, y, v)=\sin (x y v)-y, a=0, A=0, b=3$ and $B=0$. Use the shooting method to determine how many solutions there are to the corresponding two-point boundary value problem. Draw a graph of each solution.

