Two-point Boundary Value Problems

1. Let $A \in \mathbf{R}^{n \times n}$ be a weakly diagonally dominant matrix with entries a_{ij} that satisfies

$$|a_{ii}| \ge \sum_{j \ne i} |a_{ij}|$$
 for $i = 1, \dots, n$

with strict inequality holding for at least one i.

(i) Suppose Ax = 0 for some $x \in \mathbf{R}^n$. Prove that

$$|a_{ii}x_i| \le \sum_{j \ne i} |a_{ij}||x_j|$$
 for $i = 1, \dots, n$.

(ii) Let $\mu = \max\{|x_j| : j = 1, \dots, n\}$ and choose i_0 so that $|x_{i_0}| = \mu$. Show

$$|a_{ii}x_i| \ge \sum_{j \ne i} |a_{ij}||x_j|$$
 for $i = i_0$.

- (iii) Show that $|x_j| = \mu$ for every j such that $a_{i_0j} \neq 0$.
- (iv) Show that if every element of A is non-zero then A is invertible.
- (v) Show, even if some elements of A are zero, that if the upper and lower diagonals $a_{i+1,i} \neq 0$ and $a_{i,i+1} \neq 0$ for i = 1, ..., n-1 then A is invertible.
- **2.** It is known that if $|p(x)| \leq R$ and $q(x) \leq 0$ for $x \in [a,b]$ then the two-point boundary value problem

$$y'' + p(x)y' + q(x)y = f(x)$$
 where $y(a) = A$, $y(b) = B$

has a unique solution. Let h = (b - a)/m and define $x_k = a + kh$. The matrix

$$\tilde{L} = \begin{bmatrix} a_1 & c_1 & 0 & \cdots & 0 \\ b_1 & a_2 & c_2 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & b_{m-3} & a_{m-2} & c_{m-2} \\ 0 & \cdots & 0 & b_{m-2} & a_{m-1} \end{bmatrix}$$

where $a_k = -2 + h^2 q(x_k)$, $b_{k-1} = 1 - hp(x_k)/2$ and $c_k = 1 + hp(x_k)/2$ comes from the finite difference approximation

$$\frac{y_{k+1} - 2y_k + y_{k-1}}{h^2} + p(x_k) \frac{y_{k+1} - y_{k-1}}{2h} + q(x_k)y_k = f(x_k).$$

(i) Show that if hR < 2 then \tilde{L} is invertible and conclude that the finite difference approximation also has a unique solution.

3. Take q(x) = 0, a = 0, b = 12 and choose p(x), f(x), A and B according to your UNR network identification from the table

netid	p(x)	f(x)	A	B
abelizario	$-\sin 2x$	1	2	5
ablandino	$-\sin 2x$	0	1	5
arobards	$\cos 2x$	0	3	1
austinchapman	$-\cos 2x$	1	3	2
beaus	$\sin 2x$	-1	4	3
bryanwolf	$-\sin 2x$	-1	1	0
daberasturi	$\sin x$	-1	2	0
ecoats	$-\sin 2x$	0	1	5
eguzman	$\sin 2x$	0	1	3
gharper	$-\sin 2x$	-1	5	2
ipierce	$-\cos 2x$	0	4	3
isodhi	$-\cos 2x$	1	2	1
jchou	$\sin x$	0	5	0
jdardis	$-\sin x$	1	3	1
jganska	$\sin x$	0	0	6
jludwig	$-\sin 2x$	1	5	1
jmei	$-\sin 2x$	0	3	1
jmvolk	$\sin x$	0	4	3
josephlward	$\cos 2x$	1	5	2
joyd	$-\sin x$	0	4	1
kgilgen	$-\cos 2x$	0	0	4
lbrauner	$-\cos 2x$	-1	1	4
lforbes	$\sin 2x$	1	4	2
marcmiller	$-\cos 2x$	0	5	3
mchapman	$-\cos 2x$	1	4	2
michaelap	$-\cos 2x$	1	1	2
mitchellmartinez	$-\cos x$	0	5	0
mkarr	$-\sin x$	1	1	3
pdepolo	$-\sin x$	-1	1	2
pmilham	$-\cos 2x$	-1	2	3
pwhite	$-\sin 2x$	0	0	6
rjohannsen	$-\cos x$	1	5	5
ryleyh	$\cos x$	-1	2	4
scendejas	$\cos 2x$	-1	1	3
shaylam	$\cos 2x$	-1	4	0
sshores	$\sin 2x$	-1	5	0

- (i) Use the finite difference method to solve the boundary value problem. Graph your solution and find an approximation of y(6) good to 5 decimal digits.
- (ii) Use the shooting method with RK4 to solve the boundary value problem. Graph your solution and find an approximation of y(6) good to 5 decimal digits.

4. [Extra Credit and Math/CS 666] Consider the two-point boundary value problem

$$y'' = \mathcal{F}(x, y, y')$$
 where $y(a) = A$, $y(b) = B$.

In general, this problem may have many solutions or none. The shooting method treats this second order boundary value problem as a first-order initial value problem by defining v = y' to obtain the system

$$\begin{cases} y' = v \\ v' = \mathcal{F}(x, y, v) \end{cases}$$

with initial conditions y(a) = A and v(a) = A' where A' is unknown. In general, solutions to such initial value problems are unique, however, there may be many choices for A' such that the resulting solution satisfies y(b) = B.

(i) Suppose $\mathcal{F}(x,y,v) = \sin(xyv) - y$, a = 0, A = 0, b = 3 and B = 0. Use the shooting method to determine how many solutions there are to the corresponding two-point boundary value problem. Draw a graph of each solution.