1. Let $A \in \mathbf{R}^{d \times d}$ and $x \in \mathbf{R}^{d}$. Define the vector and corresponding matrix norms as

$$
\|x\|=\sum_{i=1}^{d} x_{i}^{2} \quad \text { and } \quad\|A\|=\max \{\|A x\|:\|x\|=1\}
$$

Prove that $\|A\|=\rho(B)^{1 / 2}$ where $B=A^{t} A$ and $\rho(B)=\max \{|\lambda|: \operatorname{det}(B-\lambda I)=0\}$.
Since B is real and symmetric, the spectral theorem implies there is an orthonormal basis ξ_{i} of \mathbf{R}^{d} consisting of eigenvectors x_{i} with eigenvalues λ_{i} such that

$$
B \xi_{i}=\lambda_{i} \xi_{i} \quad \text { for } \quad i=1, \ldots, d \quad \text { and } \quad \xi_{i} \cdot \xi_{j}= \begin{cases}1 & \text { for } i=j \\ 0 & \text { for } i \neq j\end{cases}
$$

Let $x \in \mathbf{R}^{d}$. Since the ξ_{i} form a basis, then there exists $c_{i} \in \mathbf{R}$ such that

$$
x=\sum_{i=1}^{d} c_{i} \xi_{i}
$$

Since the ξ_{i} are orthonormal, then

$$
\|x\|^{2}=x \cdot x=\left(\sum_{i=1}^{d} c_{i} \xi_{i}\right) \cdot\left(\sum_{j=1}^{d} c_{j} \xi_{j}\right)=\sum_{i=1}^{d} \sum_{j=1}^{d} c_{i} c_{j} \xi_{i} \cdot \xi_{j}=\sum_{i=1}^{d} c_{i}^{2} .
$$

Moreover,

$$
\begin{aligned}
\|A x\|^{2} & =A x \cdot A x=A^{t} A x \cdot x=B x \cdot x=B\left(\sum_{i=1}^{d} c_{i} \xi_{i}\right) \cdot\left(\sum_{j=1}^{d} c_{j} \xi_{j}\right) \\
& =\left(\sum_{i=1}^{d} c_{i} B \xi_{i}\right) \cdot\left(\sum_{j=1}^{d} c_{j} \xi_{j}\right)=\left(\sum_{i=1}^{d} c_{i} \lambda_{i} \xi_{i}\right) \cdot\left(\sum_{j=1}^{d} c_{j} \xi_{j}\right)=\sum_{i=1}^{d} \lambda_{i} c_{i}^{2} .
\end{aligned}
$$

Since $\|A x\|^{2} \geq 0$ and the c_{i} 's are arbitrary, then the above equality implies $\lambda_{i} \geq 0$. Thus, we may assume that the λ_{i} 's have been ordered such that

$$
0 \leq \lambda_{1} \leq \cdots \leq \lambda_{d}
$$

Now

$$
\|A\|=\max \left\{\|A x\|^{2}:\|x\|^{2}=1\right\}^{1 / 2}=\max \left\{\sum_{i=1}^{d} \lambda_{i} c_{i}^{2}: \sum_{i=1}^{d} c_{i}^{2}=1 .\right\}^{1 / 2}
$$

This shows that $\|A\|$ is the maximum over all weighted averages of the λ_{i} 's. Since the weighted average is never greater than the maximum, it follows that

$$
\|A\| \leq \max \left\{\lambda_{i}: i=1, \ldots, d\right\}^{1 / 2}
$$

Moreover, since the maximum is obtained by choosing $c_{i}=0$ for $i<d$ and $c_{d}=1$ we obtain

$$
\begin{aligned}
\|A\| & =\max \left\{\lambda_{i}: i=1, \ldots, d\right\}^{1 / 2}=\max \left\{\left|\lambda_{i}\right|: i=1, \ldots, d\right\}^{1 / 2} \\
& =\max \{|\lambda|: \operatorname{det}(B-\lambda I)=0\}^{1 / 2}=\rho(B)^{1 / 2}
\end{aligned}
$$

2. Let $B \in \mathbf{R}^{d \times d}$ be a positive symmetric matrix.
(i) State the power method for finding the spectral radius $\rho(B)$

Let $y_{0} \in \mathbf{R}^{d}$ be chosen so that it doesn't lie in any strict eigen-subspace of B. Define

$$
x_{k}=y_{k} /\left\|y_{k}\right\| \quad \text { and } \quad y_{k+1}=B x_{k} \quad \text { for } \quad k=0,1,2, \ldots
$$

Then $y_{k+1} \cdot x_{k} \rightarrow \rho(B)$ as $k \rightarrow \infty$.
(ii) Prove that the power method converges to the spectral radius.

Let the eigenvectors ξ_{i} and eigenvalues λ_{i} of B be given as in part (i). Define p such that

$$
\lambda_{i}<\lambda_{d} \quad \text { for } \quad i<p \quad \text { and } \quad \lambda_{i}=\lambda_{d} \quad \text { for } \quad i \geq p
$$

Choose $y_{0} \in \mathbf{R}^{d}$ at random. With probability 1 it follows that y_{0} is not in a strict eigensubspace of B. Therefore

$$
y_{0}=\sum_{i=1}^{d} c_{i} \xi_{i} \quad \text { where } \quad c_{i} \neq 0 \quad \text { for } \quad i=1, \ldots, d
$$

By definition $x_{0}=y_{0} /\left\|y_{0}\right\|$ and consequently

$$
y_{1}=B x_{0}=B \sum_{i=1}^{d} c_{i} \xi_{i} /\left\|y_{0}\right\|=\sum_{i=1}^{d} c_{i} B \xi_{i} /\left\|y_{0}\right\|=\sum_{i=1}^{d} c_{i} \lambda_{i} \xi_{i} /\left\|y_{0}\right\|
$$

Therefore

$$
x_{1}=y_{1} /\left\|y_{1}\right\|=\sum_{i=1}^{d} c_{i} \lambda_{i} \xi_{i} /\left\|\sum_{i=1}^{d} c_{i} \lambda_{i} \xi_{i}\right\| .
$$

By induction, it follows that

$$
x_{k}=\sum_{i=1}^{d} c_{i} \lambda_{i}^{k} \xi_{i} /\left\|\sum_{i=1}^{d} c_{i} \lambda_{i}^{k} \xi_{i}\right\| \quad \text { and } \quad y_{k+1}=\sum_{i=1}^{d} c_{i} \lambda_{i}^{k+1} \xi_{i} /\left\|\sum_{i=1}^{d} c_{i} \lambda_{i}^{k} \xi_{i}\right\| .
$$

Thus

$$
y_{k+1} \cdot x_{k}=\frac{\sum_{i=1}^{d} c_{i}^{2} \lambda_{i}^{2 k+1}}{\sum_{i=1}^{d} c_{i}^{2} \lambda_{i}^{2 k}}=\frac{\sum_{i=1}^{d} c_{i}^{2} \lambda_{i}\left(\lambda_{i} / \lambda_{d}\right)^{2 k}}{\sum_{i=1}^{d} c_{i}^{2}\left(\lambda_{i} / \lambda_{d}\right)^{2 k}} .
$$

By the definition of p we have that

$$
\lim _{k \rightarrow \infty}\left(\lambda_{i} / \lambda_{d}\right)^{2 k}= \begin{cases}0 & \text { for } i<p \\ 1 & \text { for } i \geq p\end{cases}
$$

Consequently

$$
y_{k+1} \cdot x_{k} \rightarrow \frac{\sum_{i=p}^{d} c_{i}^{2} \lambda_{d}}{\sum_{i=p}^{d} c_{i}^{2}}=\lambda_{d}=\rho(B) \quad \text { as } \quad k \rightarrow \infty
$$

