
Math/CS 466/666 Quiz 1 Version A Answer Key

1. State Newton’s method for solving f(x) = 0.

Definition. Let f be a twice continuously differentiable function. Newton’s method is
given by the fixed point iteration

xn+1 = g(xn) where g(x) = x− f(x)/f ′(x)

and x0 is an initial approximation of the root.

2. Let x∞ be a point such that f(x∞) = 0 and f ′(x∞) ̸= 0. Prove that Newton’s
method is quadratically convergent provided x0 is close enough to x∞.

Proof. Let δ > 0 be chosen small enough such that

|g′(x)| =
∣∣∣f(x)f ′′(x)

f ′(x)2

∣∣∣ ≤ γ < 1 for |x− x∞| ≤ δ.

Then

|xn+1 − x∞| = |g(xn)− g(x∞)| =
∣∣∣ ∫ x∞

xn

g′(s)ds
∣∣∣ ≤ γ|xn − x∞|

shows |xn − x∞| ≤ γn|x0 − x∞| → 0 as n → ∞ and moreover that |xn − x∞| ≤ δ. Now
define en = xn − x∞. By Taylor’s theorem there exists ξn between xn and x∞ such that

0 = f(x∞) = f(xn)− f ′(xn)en +
f ′′(ξn)

2
e2n for n = 0, 1, 2, . . . .

Therefore
f(xn)

f ′(xn)
= en − f ′′(ξn)

2f ′(xn)
e2n.

It follows that

en+1 = xn − f(xn)

f ′(xn)
− x∞ =

f ′′(ξn)

2f ′(xn)
e2n

At this point there are two ways to proceed: one following the proof in the text and
the other following the presentation in class. Both are presented here.

Proof continued as in class. Let

A = max
{
|f ′′(x)| : |x− x∞| ≤ δ

}
and B = min

{
|f ′(x)| : |x− x∞| ≤ δ

}
.

Since f ′′ is continuous then A < ∞. By definition of δ we have f ′(x) ̸= 0 for |x−x∞| ≤ δ.
Therefore, continuity of f ′ implies B > 0. It follows that

|en+1| =
∣∣∣ f ′′(ξn)

2f ′(xn)
e2n

∣∣∣ ≤ A

2B
|en|2 for n = 0, 1, 2, . . . .

Consequently |en+1| ≤ M |en|2 where M = A/(2B). This shows Newton’s method is at
least quadratically convergent. Alternatively, we may proceed as in the book.
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Proof continued as in the book. The limit

lim
n→∞

|en+1|
|en|2

= lim
n→∞

∣∣∣ f ′′(ξn)

2f ′(xn)

∣∣∣ = ∣∣∣ f ′′(x∞)

2f ′(x∞)

∣∣∣ < ∞

shows Newton’s method is at least quadratically convergent.

Note that the book actually defines quadratic order of convergence in terms of the above
limit. Thus, the proof is officially done at this point. If, however, one would like to exhibit
the inequality |en+1| ≤ M |en|2 used in class one can proceed as follows: By definition of
limit there is N large enough such that∣∣∣ f ′′(ξn)

2f ′(xn)

∣∣∣ ≤ ∣∣∣ f ′′(x∞)

2f ′(x∞)

∣∣∣+ 1 whenever n ≥ N.

Then it is sufficient to take

M = max
{∣∣∣ f ′′(x∞)

2f ′(x∞)

∣∣∣+ 1
}
∪
{ ∣∣∣ f ′′(ξn)

2f ′(xn)

∣∣∣ : n = 0, 1, . . . , N − 1
}
.

3. Explain why it is sometimes said that Newton’s method doubles the number of
significant digits at each iteration.

Explanation. Let

α = log10
(
5M |x∞|

)
so that 10α = 5M |x∞|.

Suppose xn is accurate to k significant digits. By the definition this means

|xn − x∞|
|x∞|

≤ 5× 10−k.

Now
|xn+1 − x∞|

|x∞|
≤ M |xn − x∞|2

|x∞|
= M |x∞|

( |xn − x∞|
|x∞|

)2

≤ M |x∞|(52 × 10−2k) = 5× 10α−2k

implies xn+1 is accurate to 2k−α significant digits. Provided k is large compared to α this
is about twice the number of significant digits that were accurate in xn. Since k → ∞ as
xn → x∞, it is natural to assume that k is very large compared to α. Therefore Newton’s
method about doubles the number of significant digits between each iteration.
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Consider the following table of divided differences

i xi f [xi]

0 1.0 3.0
1.0

1 2.0 4.0 −0.75
−2.0

2 5.0 −2.0 0.50 −0.04018
1.0 −0.14286

3 8.0 1.0 −0.50
−1.0

4 9.0 0.0

4. Determine what value goes in the box.

Answer. Calculate the divided difference

f [x0, x1, x2, x3] =
f [x0, x1, x2]− f [x1, x2, x3]

x0 − x1
=

−0.75− 0.50

1− 8
=

1.25

7
≈ 0.17857.

5. Use the information in the table to write down the interpolating polynomial of
degree 2 that passes through the points (2, 4), (5,−2) and (8, 1).

Answer. Reading the coefficients from the second diagonal in the chart yields

p(x) = 4.0 + (−2.0)(x− 2) + (0.50)(x− 2)(x− 5).

6. State the method of Gauss quadrature in two steps:

(i) Define the orthogonal polynomials Pn of degree n on the interval [−1, 1].

Definition. Consider the inner product and norm on the space of integrable functions
defined by

(f, g) =

∫ 1

−1

f(x)g(x)dx and ∥f∥ =
√

(f, f).

The orthogonal polynomials

{Pk : k = 0, 1, . . . n }

may be obtained using the Gram–Schmidt orthogonalization procedure with respect to the
above inner product and norm starting with the standard polynomial basis

{xk : k = 0, 1, . . . n }.
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In particular, define

v0(x) = 1 P0 =
v0
∥v0∥

v1(x) = x− (x, P0)P0 P1 =
v1
∥v1∥

v2(x) = x2 − (x2, P0)P0 − (x2, P1)P1 P2 =
v2
∥v2∥

...
...

vn(x) = xn −
n−1∑
k=0

(xn, Pk)Pk Pn =
vn
∥vn∥

(ii) Define the points xk and the weights wk for used in the approximation

∫ 1

−1

f(x) dx ≈
n∑

k=0

wkf(xk).

Definition. Let xk for k = 0, 1, . . . , n be the n + 1 distinct roots to the orthogonal
polynomial Pn+1 of degree n + 1. Thus Pn+1(xk) = 0 for k = 0, 1, . . . , n. Consider the
system of n+ 1 linear equations given by∫ 1

−1

xjdx =
n∑

k=0

wkx
j
k for j = 0, 1, . . . , n

in the n + 1 unknowns wk where k = 0, 1, . . . n. Since the xj ’s are distinct this system is
non-singular. Therefore, there exists a unique solution for the wk’s. This specifies the xk’s
and wk’s that appear in the Gauss quadrature formula.

7. Prove the Gauss quadrature method is exact for polynomials of degree 2n+ 1.

Proof. Let p be a polynomial of degree 2n + 1. Since the Pn+1 has degree n + 1, the
division algorithm implies there exist polynomials r and q of degree n such that

p(x) = q(x)Pn+1(x) + r(x).

Claim that ∫ 1

−1

r(x)dx =

n∑
k=0

wkr(xk).

Write

r(x) =

n∑
j=0

ajx
j .
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Then by the choice of wk’s we have∫ 1

−1

r(x)dx =

∫ 1

−1

n∑
j=0

ajx
jdx =

n∑
j=0

aj

∫ 1

−1

xjdx

=

n∑
j=0

aj

n∑
k=0

wkx
j
k =

n∑
k=0

wk

n∑
j=0

ajx
j
k =

n∑
k=0

wkr(xk).

Since Pn+1 is orthogonal to all polynomials of degree n or less and Pn+1(xk) = 0, then∫ 1

−1

p(x)dx =

∫ 1

−1

(
q(x)Pn+1(x) + r(x)

)
dx = (q, Pn+1) +

∫ 1

−1

r(x)dx

=

∫ 1

−1

r(x)dx =

n∑
k=0

wkr(xk) =

n∑
k=0

wk

(
q(xk) · 0 + r(xk)

)
=

n∑
k=0

wk

(
q(xk)Pn+1(xk) + r(xk)

)
=

n∑
k=0

wkp(xk).

This finishes the proof.

8. [Extra Credit and for Math/CS 666] Consider the approximation

f ′(x) ≈ f(x+ h)− f(x− h)

2h
.

Explain why taking h too large leads to a bad approximation and why taking h too
small also leads to a bad approximation.

Explanation. Since

lim
h→0

f(x+ h)− f(x− h)

2h
= f ′(x),

then analytically the approximation is only guaranteed to be accurate when h is sufficiently
small. Therefore, a bad approximation is likely to occur when h is too large.

On the other hand, if h is very small then the continuity of f implies that f(x+h) will
be nearly equal to f(x−h). The rounding error that happens when numerically subtracting
two numbers which are nearly equal in the numerator causes a loss of precision. Therefore,
taking h too small will also lead to a bad approximation.


