1. Please answer one of the following questions:
(i) Write or modify a computer program to implement Taylor's second order method for solving the ordinary differential equation initial value problem

$$
\frac{d y}{d t}=e^{-y^{2}} \quad \text { with } \quad y(0)=0
$$

Use your program to find $y(3)$ to 5 significant digits.
(ii) Write or modify a computer program to implement Newton's method for systems to solve

$$
\begin{aligned}
x_{1}+\cos \left(x_{1} x_{2} x_{3}\right) & =1 \\
\left(1-x_{1}\right)^{1 / 4}+x_{2}+0.05 x_{3}^{2}-0.15 x_{3} & =1 \\
-x_{1}^{2}-0.1 x_{2}^{2}+0.01 x_{2}+x_{3} & =1
\end{aligned}
$$

starting with $\left(x_{1}, x_{2}, x_{3}\right)=(0.5,0.5,0.5)$. Print the first 5 iterations.
2. [Extra Credit and Math/CS 666] Work the other problem, the one you didn't do above, and turn it in for exact credit.

Submit your program and output using the commands

```
$ submit -q1 prog1.c
$ submit -q2 output1.txt
```

Here prog1.c answers the question you selected above and output1.txt is the respective output. The output may be obtained by compiling and running the program as

```
$ gcc -std=gnu99 -o prog1 prog1.c -lm
$ ./prog1 >output1.txt
```

Submit the extra-credit problem using

```
$ submit -q3 prog2.c
$ submit -q4 output2.txt
```

If you wish to change any part of your submission simply retype the appropriate submit command again. You may check each of your submissions with the command

$$
\$ \text { submit -pn }
$$

where n is equal the number used in submit command.

