1. Please answer one of the following questions:
(i) Consider the linear model

$$
f(x)=c_{1}+c_{2} \log x+c_{3} \exp x
$$

with unknown parameters c_{i}. Use the least squares method to find the values of the parameters that best fit the data in file-3.dat. This file has the following format: The first line of the file consists of a single integer n telling how many data points there are. Each subsequent line specifies x_{j} and y_{j} where $y_{j} \approx f\left(x_{j}\right)$ as two floating point numbers separated by spaces.
(ii) The file matrix.c contains C code that defines the matrix $A \in \mathbf{R}^{14 \times 14}$. Use the power method and inverse power method to find $\|A\|_{2}$ and $\left\|A^{-1}\right\|_{2}$ to at least 10 significant digits. Then compute $\operatorname{cond}_{2}(A)$.
2. [Extra Credit and Math/CS 666] Let $A \in \mathbf{R}^{n \times n}$ be a square invertible matrix. Consider the algorithm

Repeatedly factorize $A=Q R$ and replace A with $R Q$
described on page 122 of Numerical Algorithms by Justin Solomon. Write a program that implements this algorithm using one of the $Q R$ factorization routines written in class. Note that since A is square, then R and Q are also square. Under certain conditions the diagonal elements of R will converge to the eigenvalues of A up to a possible sign difference as the program runs. Starting with the matrix contained in the file extra.c print the diagonal elements of R at each iteration to show whether and how they converge.

