Math/CS 466/666: Programming Project 1

1. The first computer program ever written was by Ada Lovelace who wrote a program for the Analytical Engine to compute Bernoulli numbers. The Bernoulli number B_{n} is given by $B_{n}=\mathcal{B}_{n}(0)$ where $\mathcal{B}_{n}(x)$ is the unique polynomial of degree n such that

$$
\int_{x}^{x+1} \mathcal{B}_{n}(t) d t=x^{n}
$$

Find B_{n} for $n=0,1,2$ and 3 by substituting a polynomial of degree n into the integral and solving for the coefficients so that equality holds. You may use Maple or some other computer algebra system or do the calculation by hand.

Writing $\mathcal{B}_{0}(x)=\alpha$ for some constant α and substituting into the equation yields

$$
\int_{x}^{x+1} \alpha d t=\alpha=1
$$

Consequently $\alpha=1$ implies $B_{0}=\mathcal{B}_{0}(0)=1$.
Writing $\mathcal{B}_{1}(x)=\alpha+\beta x$ for constants α and β yields

$$
\begin{aligned}
\int_{x}^{x+1}(\alpha+\beta t) d t & =\alpha+\frac{\beta}{2}\left((x+1)^{2}-x^{2}\right)=\alpha+\frac{\beta}{2}(2 x+1) \\
& =\left(\alpha+\frac{\beta}{2}\right)+\beta x=x
\end{aligned}
$$

Consequently

$$
\alpha+\frac{\beta}{2}=0 \quad \text { and } \quad \beta=1
$$

Therefore $\alpha=-1 / 2$ and $\mathcal{B}_{1}(x)=-1 / 2+x$ imply $B_{1}=\mathcal{B}_{1}(0)=-1 / 2$.
Writing $\mathcal{B}_{2}(x)=\alpha+\beta x+\gamma x^{2}$ for constants α, β and γ yields

$$
\begin{aligned}
\int_{x}^{x+1}\left(\alpha+\beta t+\gamma t^{2}\right) d t & =\left(\alpha+\frac{\beta}{2}\right)+\beta x+\frac{\gamma}{3}\left((x+1)^{3}-x^{3}\right) \\
& =\left(\alpha+\frac{\beta}{2}\right)+\beta x+\frac{\gamma}{3}\left(3 x^{2}+3 x+1\right) \\
& =\left(\alpha+\frac{\beta}{2}+\frac{\gamma}{3}\right)+(\beta+\gamma) x+\gamma x^{2}=x^{2}
\end{aligned}
$$

Consequently

$$
\alpha+\frac{\beta}{2}+\frac{\gamma}{3}=0, \quad \beta+\gamma=0 \quad \text { and } \quad \gamma=1
$$

Therefore $\beta=-1, \alpha=1 / 6$ and $\mathcal{B}_{2}(x)=1 / 6-x+x^{2}$ implies $B_{2}=\mathcal{B}_{2}(0)=1 / 6$.

Writing $\mathcal{B}_{3}(x)=\alpha+\beta x+\gamma x^{2}+\delta x^{3}$ for constants α, β, γ and δ yields

$$
\begin{aligned}
\int_{x}^{x+1}(\alpha & \left.+\beta t+\gamma t^{2}+\delta t^{3}\right) d t \\
& =\left(\alpha+\frac{\beta}{2}+\frac{\gamma}{3}\right)+(\beta+\gamma) x+\gamma x^{2}+\frac{\delta}{4}\left((x+1)^{4}-x^{4}\right) \\
& =\left(\alpha+\frac{\beta}{2}+\frac{\gamma}{3}\right)+(\beta+\gamma) x+\gamma x^{2}+\frac{\delta}{4}\left(4 x^{3}+6 x^{2}+4 x+1\right) \\
& =\left(\alpha+\frac{\beta}{2}+\frac{\gamma}{3}+\frac{\delta}{4}\right)+(\beta+\gamma+\delta) x+\left(\gamma+\frac{3}{2} \delta\right) x^{2}+\delta x^{3}=x^{3}
\end{aligned}
$$

Consequently

$$
\alpha+\frac{\beta}{2}+\frac{\gamma}{3}+\frac{\delta}{4}=0, \quad \beta+\gamma+\delta=0, \quad \gamma+\frac{3}{2} \delta=0 \quad \text { and } \quad \delta=1
$$

Therefore

$$
\gamma=-\frac{3}{2}, \quad \beta=\frac{1}{2}, \quad \alpha=-\frac{1}{4}+\frac{1}{2}-\frac{1}{4}=0
$$

and $\mathcal{B}_{3}(x)=(1 / 2) x-(3 / 2) x^{2}+x^{3}$ implies $B_{3}=\mathcal{B}_{3}(0)=0$.
2. By the Fundamental Theorem of Calculus it follows that

$$
\frac{d}{d x} \int_{x}^{x+1} \mathcal{B}_{n}(t) d t=\mathcal{B}_{n}(x+1)-\mathcal{B}_{n}(x)=\int_{x}^{x+1} \mathcal{B}_{n}^{\prime}(t) d t
$$

Use this fact to show that $\mathcal{B}_{n}^{\prime}(x)=n \mathcal{B}_{n-1}(x)$.
By definition

$$
\int_{x}^{x+1} \mathcal{B}_{n}(t) d t=x^{n}
$$

Therefore

$$
\frac{d}{d x} \int_{x}^{x+1} \mathcal{B}_{n}(t) d t=n x^{n-1}
$$

Since, as noted above

$$
\int_{x}^{x+1} \mathcal{B}_{n}^{\prime}(t) d t=\frac{d}{d x} \int_{x}^{x+1} \mathcal{B}_{n}(t) d t
$$

it follows upon dividing by n that

$$
\int_{x}^{x+1} n^{-1} \mathcal{B}_{n}^{\prime}(t) d t=x^{n-1}
$$

Since $\mathcal{B}_{n}(t)$ is a polynomial of degree n, then $n^{-1} \mathcal{B}_{n}^{\prime}(t)$ is a polynomial of degree $n-1$. Moreover, by definition $\mathcal{B}_{n-1}(x)$ is the unique polynomial of degree $n-1$ such that

$$
\int_{x}^{x+1} \mathcal{B}_{n-1}(t) d t=x^{n-1}
$$

Therefore, we conclude $n^{-1} \mathcal{B}_{n}^{\prime}(x)=\mathcal{B}_{n-1}(x)$ or, in otherwords, that $\mathcal{B}_{n}^{\prime}(x)=n \mathcal{B}_{n-1}(x)$.
3. By the Fundamental Theorem of Calculus we also have

$$
\int_{0}^{x} \mathcal{B}_{n}^{\prime}(t) d t=\mathcal{B}_{n}(x)-\mathcal{B}_{n}(0) \quad \text { or equivalently } \quad \mathcal{B}_{n}(x)=B_{n}+\int_{0}^{x} n \mathcal{B}_{n-1}(t) d t
$$

Integrate the above equality in x from 0 to 1 , then interchange the order of integration to obtain the relation that

$$
B_{n}=\int_{0}^{1} t n \mathcal{B}_{n-1}(t) d t \quad \text { for } \quad n>1
$$

Integrating each side of the equality yields

$$
\begin{equation*}
\int_{0}^{1} \mathcal{B}_{n}(x) d x=\int_{0}^{1} B_{n} d x+\int_{0}^{1} \int_{0}^{x} n \mathcal{B}_{n-1}(t) d t d x \tag{3.1}
\end{equation*}
$$

Setting $x=0$ in the defining equality

$$
\int_{x}^{x+1} \mathcal{B}_{n}(t) d t=x^{n}
$$

shows that the left side of (3.1) is exactly equal to zero. Since B_{n} is a constant, the first term of the right is B_{n}. It remains to switch the order of integration in the last term. Doing so obtains

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{x} n \mathcal{B}_{n-1}(t) d t d x=\int_{0}^{1} \int_{t}^{1} n \mathcal{B}_{n-1}(t) d x d t \\
& \quad=\int_{0}^{1}(1-t) n \mathcal{B}_{n-1}(t) d t=\int_{0}^{1} n \mathcal{B}_{n-1}(t) d t-\int_{0}^{1} t n \mathcal{B}_{n-1}(t) d t
\end{aligned}
$$

Now, if $n>1$ we may set $x=0$ in the defining equality

$$
\int_{x}^{x+1} \mathcal{B}_{n-1}(t)=x^{n-1}
$$

to obtain that

$$
\int_{0}^{1} n \mathcal{B}_{n-1}(t) d t=0
$$

Note if $n=1$ it is not possible to set $x=0$ above because that would result in the indeterminate form 0^{0}. This is why the recurrence is only good for $n>1$. It follows that

$$
B_{n}=\int_{0}^{1} \operatorname{tn} \mathcal{B}_{n-1}(t) d t \quad \text { for } \quad n>1
$$

4. Write $\mathcal{B}_{n-1}(x)=\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{n-1} x^{n-1}$ and use the identity

$$
\mathcal{B}_{n}(x)=\int_{0}^{1} \operatorname{tn} \mathcal{B}_{n-1}(t) d t+\int_{0}^{x} n \mathcal{B}_{n-1}(t) d t
$$

derived in the previous step to find formulas for B_{n} and $\mathcal{B}_{n}(x)$ in terms of the α_{k}.
Integrating yields

$$
\int_{0}^{1} t n \mathcal{B}_{n-1}(t) d t=\int_{0}^{1} \sum_{k=0}^{n-1} n \alpha_{k} t^{k+1} d t=\left.\sum_{k=0}^{n-1} \frac{n \alpha_{k}}{k+2} t^{k+2}\right|_{0} ^{1}=\sum_{k=0}^{n-1} \frac{n \alpha_{k}}{k+2}
$$

and

$$
\int_{0}^{x} n \mathcal{B}_{n-1}(t) d t=\int_{0}^{x} \sum_{k=0}^{n-1} n \alpha_{k} t^{k} d t=\left.\sum_{k=0}^{n-1} \frac{n \alpha_{k}}{k+1} t^{k+1}\right|_{0} ^{x}=\sum_{k=0}^{n-1} \frac{n \alpha_{k}}{k+1} x^{k+1}
$$

Therefore

$$
B_{n}=\sum_{k=0}^{n-1} \frac{n \alpha_{k}}{k+2} \quad \text { and } \quad \mathcal{B}_{n}(x)=B_{n}+\sum_{k=0}^{n-1} \frac{n \alpha_{k}}{k+1} x^{k+1}
$$

5. Starting with $\mathcal{B}_{1}(x)=x-1 / 2$, write a program that computes the Bernoulli numbers by means of the formulas derived in the previous step. Use your program to print a table listing the values of n and B_{n} for $n=1,2, \ldots, 10$.

The program is

```
#include <stdio.h>
#include <math.h>
#define N 10
double alpha[N+1]={-0.5,1}; // B1(x)=x-1/2;
int main(){
    printf("#%6s %24s\n","n","Bn");
    for(int n=1;;){
        printf("%7d %24.14g\n",n,alpha[0]);
        n++;
        if(n>N) break;
        double b=0;
        for(int k=0;k<n;k++) b+=alpha[k]/(k+2);
        for(int k=n;k>0;k--) alpha[k]=n*alpha[k-1]/k;
        alpha[0]=n*b;
    }
    return 0;
}
```

and the output is

n	Bn
1	-0.5
2	0.16666666666667
3	0
4	-0.033333333333333
5	-6.9388939039072e-16
6	0.02380952380952
7	-2.603472992746e-14
8	-0.033333333333543
9	-1.8882395647069e-12
10	0.075757575738698

