
1 Homework 1
Problem 1 (2.7.6) Convert 1/12 to binary.

Solution. The doubling approach results in

1/12 1/6 1/3 2/3 4/3 2/3 4/3 2/3 . . .
. 0 0 0 1 0 1 0 . . .

from which we may infer that
1

12
= 0.0001010 . . . = 0.00010.

To verify the above formula note that

0.00010 = 2−3 · 0.10 = 2−3

∞∑
k=1

2 · 2−2k

= 2−2

∞∑
k=1

1

4k
= 2−2 1/4

1− 1/4
= 2−21

3
=

1

12
.

Problem 2 (2.7.7) Convert 1/16 to binary.

Solution. Again use the doubling approach to obtain

1/16 1/8 1/4 1/2 1 0 0 . . .
. 0 0 0 1 0 0 . . .

which implies
1

16
= 0.0001.

Problem 3 (2.7.11) Convert 0.111 111 to decimal.

Solution. Converting each group of three digits to base eight first yields

0.111 111 =
7

8
+

7

82
=

56 + 7

64
= 0.984375.
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Problem 4 (2.7.12) Convert 0.100 001 to decimal.

Converting each group of three digits to base eight first yields

0.100 001 =
4

8
+

1

82
=

32 + 1

64
= 0.515625.

Problem 5 (2.6.2) Examine the propagation of roundoff through division.

Solution. Suppose computations are performed using floating-point arith-
metic accurate to n significant digits. Let x1, x2 ∈ R with x2 ̸= 0 and denote
by x1 and x2 respectively the nearest floating-point approximations. Since by
definition the relative errors in the approximations are bounded by 5×10−n,
setting

ε1 =
x1 − x1

x1

and ε2 =
x2 − x2

x2

yields ε1, ε2 ∈ E where E = [−5× 10−n, 5× 10−n]. A simple rearrangement
of these expressions yields that

x1 = (1 + ε1)x1 and x2 = (1 + ε2)x2.

Since x2 ̸= 0 it follows that x2 ̸= 0. Now, let x be the nearest floating-
point approximation to the exact quotient x = x1/x2. Thus,

x = (1 + ε)x for some ε ∈ E.

We now combine the above to show how all the rounding errors have prop-
agated into our estimate x of the exact quotient x1/x2. To do this compute
the relative error as

x− x1/x2

x1/x2

=
(1 + ε)x− x1/x2

x1/x2

=
(1 + ε)x1/x2 − x1/x2

x1/x2

=
(1 + ε)[(1 + ε1)x1]/[(1 + ε2)x2]− x1/x2

x1/x2

=
(1 + ε)(1 + ε1)

(1 + ε2)
− 1.

In other words,
x =

(1 + ε)(1 + ε1)

(1 + ε2)
· x1

x2

.

2



If we assume that all terms involving products of ε, ε1 and ε2 can be neglected,
the above expression can be simplified as

(1 + ε)(1 + ε1)

(1 + ε2)
= (1 + ε+ ε1 + εε1)

∞∑
k=0

(
−1

k

)
(ε2)

k

≈ (1 + ε+ ε1)(1− ε2) ≈ (1 + ε+ ε1 − ε2).

Therefore, the propagated relative error is approximately ε + ε1 − ε2 and is
guaranteed to satisfy the bound

|ε+ ε1 − ε2| ≤ 3 · 5× 10−n = 1.5× 10−n+1.

Problem 6 (2.8.1) Derive the corresponding results for division relating to
the frequency distribution of the mantissa.

Solution. We example the way division transforms various distributions. Let
x come from the probability density f(x), let y come from g(y) and let the
quotient z have the density h(z). Further denote the cumulative distributions
by

F (x) =

∫ x

1/b

f(x)dx, G(y) =

∫ y

1/b

g(y)dy and H(z) =

∫ z

1/b

h(z)dz.

In order to understand how H(z) depends on the distributions f(x) and
g(y) we first note the mantissa of the quotient corresponding to x/y is given
by

m(x, y) =

{
x/y x/y < 1

x/(yb) x/y ≥ 1.

where second case occurs when the exponent has to be shifted by one so z
is still of the form 0.DDDDDDDDD where the D’s represent the base-b digits
the first of which is non-zero. We interpret H(z) = P{m(x, y) ≤ z} as the
probability measure of the set of points for which the mantissa of the x/y is
less than or equal z.

3



Graphically the condition m(x, y) ≤ z may be depicted by
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Values of x and y such that m(x,y) ≤ z for b=10

x/y ≤ z
x/y ≥ 1 and x/(yb) ≤ z

We now integrate over this set to obtain the cumulative distribution function

H(z) =

∫ z

1/b

∫ 1

x/z

f(x)g(y)dy dx+

∫ z

1/b

∫ x

1/b

f(x)g(y)dy dx

+

∫ 1

z

∫ x

x/(zb)

f(x)g(y)dy dx

=

∫ z

1/b

f(x)
[
G(1)−G

(x
z

)]
dx+

∫ z

1/b

f(x)
[
G(x)−G

(1
b

)]
dx

+

∫ 1

z

f(x)
[
G(x)−G

( x

zb

)]
dx.

Then differentiating gives the density

h(z) = f(z)
[
G(1)−G

(z
z

)
+G(z)−G

(1
b

)
−G(z) +G

( z

zb

)]
+

∫ z

1/b

f(x)g
(x
z

) x

z2
dx+

1

b

∫ 1

z

f(x)g
( x

zb

) x

z2
dx.

Suppose the divisor has the reciprocal distribution; that is,

g(y) =
1

y log b
.
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Substituting this into the formula for h(z) yields

h(z) =

∫ z

1/b

f(x)
( z

x log b

) x

z2
dx+

1

b

∫ 1

z

f(x)
( zb

x log b

) x

z2
dx

=

∫ z

1/b

f(x)
( 1

z log b

)
dx+

∫ 1

z

f(x)
( 1

z log b

)
dx =

1

z log b
.

Thus, if one of the divisor of a quotient comes from the reciprocal distribu-
tion, then regardless of the distribution of the dividend, the quotient has the
reciprocal distribution.

Note for products treated in the text there is a symmetry which implies
one does not need consider separately the case when f(x) is given by the
reciprocal distribution. However, such is not the case with quotients, so we
alternatively suppose

f(x) =
1

x log b
.

Now, substituting this into the formula for h(z) yields

h(z) =

∫ z

1/b

1

x log b
g
(x
z

) x

z2
dx+

1

b

∫ 1

z

1

x log b
g
( x

zb

) x

z2
dx

=
1

z log b

{∫ z

1/b

g
(x
z

)dx
z

+

∫ 1

z

g
( x

zb

)dx
zb

}
=

1

z log b

{∫ 1

1/(zb)

g(u)du+

∫ 1/(zb)

1/b

g(v)dv

}
=

1

z log b
.

Here we have made the substitutions u = x/z and v = x/(zb).
Having treated both cases, we see that provided either f(x) or g(y) have

the reciprocal distribution then h(z) will also have the reciprocal distribution.
Thus, the persistence of the reciprocal distribution is also established in the
case of division.

Next we show how the reciprocal distribution can arise. Let r(z) be the
reciprocal distribution and define

D{h} = max
{∣∣∣h(z)− r(z)

r(z)

∣∣∣ : 1
b
≤ z ≤ 1

}
.

Since
r(z) =

∫ z

1/b

f(x)r
(x
z

) x

z2
dx+

1

b

∫ 1

z

f(x)r
( x

zb

) x

z2
dx,
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it follows that
h(z)− r(z)

r(z)
=

∫ z

1/b

f(x)
{g(x/z)− r(x/z)

r(z)

} x

z2
dx

+
1

b

∫ 1

z

f(x)
{g[x/(zb)]− r[x/(zb)]

r(z)

} x

z2
dx.

But
z2

x
r(z) =

z

x log b
= r

(x
z

)
and bz2

x
r(z) =

bz

x log b
= r

( x

bz

)
imply

h(z)− r(z)

r(z)
=

∫ z

1/b

f(x)
{g(x/z)− r(x/z)

r(x/z)

}
dx

+

∫ 1

z

f(x)
{g[x/(zb)]− r[x/(zb)]

r[x/(zb)]

}
dx.

Since f(x) ≥ 0 in the two intervals∣∣∣h(z)− r(z)

r(z)

∣∣∣ ≤ ∫ z

1/b

f(x)D{g}dx+

∫ 1

z

f(x)D{g}dx ≤ D{g}.

for all z. Consequently D{h} ≤ D{g}. By a similar argument D{h} ≤ D{f}.
In particular, it is impossible for the distribution of mantissas of the quotient
to get farther from the reciprocal distribution than either the distribution of
the dividend or the divisor.

Problem 7 (3.3.1) For large x rearrange
1

1 + x
− 1

x

for evaluation with respect to x.

Solution. Simply by finding a common denominator as
1

1 + x
− 1

x
=

x− (1 + x)

x(1 + x)
=

−1

x(1 + x)
.

Note after simplifying that the difference of two nearly equal numbers has
been eliminated from the expression so there is no longer any loss of precision
due to cancellation.
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Problem 8 (3.3.4) For large x rearrange
3
√
x+ 1− 3

√
x

for evaluation with respect to x.

Solution. Since a3 − b3 = (a − b)(a2 + ab + b2) then simplify by completing
the difference of cubes as

3
√
x+ 1− 3

√
x =

(
(x+ 1)1/3 − x1/3

)
· (x+ 1)2/3 + (x+ 1)1/3x1/3 + x2/3

(x+ 1)2/3 + (x+ 1)1/3x1/3 + x2/3

=
1

(x+ 1)2/3 + (x+ 1)1/3x1/3 + x2/3
.

After simplifying the difference of two nearly equal numbers has been elimi-
nated so there is no longer any loss of precision due to cancellation.

Problem 9 (3.3.5) For small ε rearrange

cos(x+ ε)− cosx

for evaluation with respect to x.

Solution. Using the angle addition and subtraction formulas

cos(a+ b) = cos a cos b− sin a sin b

cos(a− b) = cos a cos b+ sin a sin b

write

cos(x+ ε) = cos
(
(x+ ε/2) + ε/2

)
= cos(x+ ε/2) cos(ε/2)− sin(x+ ε/2) sin(ε/2)

cos(x) = cos
(
(x+ ε/2)− ε/2

)
= cos(x+ ε/2) cos(ε/2) + sin(x+ ε/2) sin(ε/2).

Consequently

cos(x+ ε)− cosx = −2 sin(x+ ε/2) sin(ε/2).

Note the subtraction of two nearly equal numbers when ε is small has been
eliminated; however, if sinx ≈ 0 then loss of precision may still occur in the
evaluation of sin(x + ε/2). In this case x ≈ kπ for some k ∈ Z and there is
no way that I know to avoid this other way of losing precision.

7



Problem 10 (3.3.6) For large N rearrange∫ N+1

N

dx

x
= ln(N + 1)− lnN

for evaluation with respect to N .

Solution. Recall the definition of the inverse hyperbolic tangent

artanhx =
1

2
ln
(1 + x

1− x

)
which is available as the standard subroutine atanh for evaluation on the
computer. Setting x = 1/(2N + 1) yields

1 + x

1− x
=

1 + 1/(2N + 1)

1− 1/(2N + 1)
=

2N + 2

2N
=

N + 1

N
.

Therefore∫ N+1

N

dx

x
= ln(N + 1)− lnN = ln

(N + 1

N

)
= 2artanh

( 1

2N + 1

)
.

Note that a direct evaluation of the expression

ln
(
1 +

1

N

)
on the computer using the built-in log function for N large also leads to loss
of precision. This is why we used the inverse hyperbolic tangent. The com-
puter may also have a function called log1p defined as log1p(x) = log(1+x)
which could be used instead. In this case one could simply evaluate∫ N+1

N

dx

x
= ln(N + 1)− lnN ≈ log1p

( 1

N

)
without any loss of precision.

Problem 11 (3.4.1) For ε small compute

1− cos ε

ε2
.
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Solution. It’s tempting to write

1− cos ε

ε2
=

1− cos ε

ε2
· 1 + cos ε

1 + cos ε
=

(sin ε
ε

)2( 1

1 + cos ε

)
=

sinc2 ε

1 + cos ε
.

This removes the loss of precision, but unfortunatelysinc is not part of the
standard mathematical library available for evaluation on the computer. One
could use an approximation such as

sinc ε =

{
(sin ε)/ε for |ε| > 10−15

0 otherwise,

but since this section is about using series we choose a different approach.
Since

cos ε =
∞∑
k=0

(−1)k

(2k)!
ε2k

then
1− cos ε = −

∞∑
k=1

(−1)k

(2k)!
ε2k =

∞∑
k=0

(−1)k

(2k + 2)!
ε2k+2

and consequently

1− cos ε

ε2
=

∞∑
k=0

(−1)k

(2k + 2)!
ε2k ≈ 1

2
− 1

24
x2 +

1

720
x4 − 1

40320
x6 + · · · .

Supposing ε is small one may now truncate at only a few terms N such that

2

(2N + 2)!
ε2N < 10−15

to obtain an approximation good to within the accuracy of double-precision
floating-point arithmetic.

Problem 12 (3.4.4) For ε small compute√
e2ε − 1

eε − 1
.
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Solution. Again it is tempting to make the exact algebraic simplifications

e2ε − 1

eε − 1
=

(eε − 1)(eε + 1)

eε − 1
= eε + 1

and the compute √
e2ε − 1

eε − 1
=

√
eε + 1.

This results in a exact expression which avoids any loss of precision due to
subtraction of nearly equal numbers. However, this expression still involves
the numerical computation of exp and sqrt which are unnecessarily time
consuming when ε is known to be small. Rather than expanding the original
expression in terms of series we proceed as follows.

eε + 1 =
( ∞∑

k=0

1

k!
εk
)
+ 1 = 2 +

∞∑
k=1

1

k!
εk = 2(1 + δ)

where
δ =

1

2

∞∑
k=1

1

k!
εk.

By the binomial theorem

√
eε + 1 =

√
2 ·

√
1 + δ =

√
2

∞∑
l=0

(
1/2

l

)
δl

=
√
2

∞∑
l=0

(
1/2

l

)(1
2

∞∑
k=1

1

k!
εk
)l

=
√
2
(
1 +

1

4
x+

3

32
x2 +

7

384
x3 +

3

2048
x4 + · · ·

)
.

Problem 13 (3.4.5) For ε small find an expression to compute

ε− sin ε

ε− tan ε
.

Solution. First note that
ε− sin ε

ε− tan ε
=

ε cos ε− sin ε cos ε

ε cos ε− sin ε
=

ε cos ε− 2−1 sin(2ε)

ε cos ε− sin ε
.
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Now

ε cos ε− sin ε = ε

∞∑
k=0

(−1)k

(2k)!
ε2k −

∞∑
k=0

(−1)k

(2k + 1)!
ε2k+1

= ε

∞∑
k=0

(−1)k
( 1

(2k)!
− 1

(2k + 1)!

)
ε2k

= ε

∞∑
k=1

(−1)k2k

(2k + 1)!
ε2k

and similarly

ε cos ε− 2−1 sin(2ε) = ε

∞∑
j=0

(−1)j

(2j)!
ε2j − 1

2

∞∑
j=0

(−1)j

(2j + 1)!
(2ε)2j+1

= ε
∞∑
j=0

(−1)j
( 1

(2j)!
− 22j

(2j + 1)!

)
ε2j

= ε
∞∑
j=1

(−1)j(2j + 1− 22j)

(2j + 1)!
ε2j.

By the binomial theorem
ε3

ε cos ε− sin ε
=

1∑∞
k=1

(−1)k2k
(2k+1)!

ε2k−2

=
1

−1
3
+
∑∞

k=2
(−1)k2k
(2k+1)!

ε2k−2
=

−3

1 + δ
= −3

∞∑
l=0

(
−1

l

)
δl

where
δ = −3

∞∑
k=2

(−1)k2k

(2k + 1)!
ε2k−2.

It follows that
ε cos ε− 2−1 sin(2ε)

ε cos ε− sin ε
= −3

∞∑
j=1

(−1)j(2j + 1− 22j)

(2j + 1)!
ε2j−2

∞∑
l=0

(
−1

l

)
δl

= −3
∞∑
j=1

(−1)j(2j + 1− 22j)

(2j + 1)!
ε2j−2

∞∑
l=0

(
−1

l

)(
− 3

∞∑
k=2

(−1)k2k

(2k + 1)!
ε2k−2

)l

= −1

2
+

9

40
ε2 − 27

2800
ε4 +

27

112000
ε6 − · · · .
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Problem 14 (3.4.6) For x large find an expression to compute

(x+ 1)1/n − x1/n.

Solution. Factoring and applying the binomial theorem yields

(x+ 1)1/n − x1/n = x1/n
(
(1 + 1/x)1/n − 1

)
= x1/n

{( ∞∑
l=0

(
1/n

l

)
(1/x)l

)
− 1

}
= x1/n

∞∑
l=1

(
1/n

l

)
(1/x)l

= x1/n
( 1

nx
+

n− 1

2(nx)2
+

(n− 1)(2n− 1)

6(nx)3

+
(n− 1)(2n− 1)(3n− 1)

24(nx)4
+ · · ·

)
.

Problem 15 (4.7.1) Apply Newton’s method using x0 = 1/2 to solve

xex − 1 = 0.

Solution. After computing

f(x) = xex − 1 and f ′(x) = (1 + x)ex,

I wrote a program in C that looked like

1 #include <stdio.h>
2 #include <math.h>
3

4 double f(double x){
5 return x*exp(x)-1;
6 }
7 double df(double x){
8 return (x+1)*exp(x);
9 }

10 double g(double x){
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11 return x-f(x)/df(x);
12 }
13 int main(){
14 double x=0.5;
15 printf("#%10s %20s\n","n","x_n");
16 for(int n=0;n<7;n++){
17 printf("%11d %20.14g\n",n,x);
18 x=g(x);
19 }
20 return 0;
21 }

The output was

# n x_n
0 0.5
1 0.57102043980842
2 0.56715556874411
3 0.56714329053326
4 0.56714329040978
5 0.56714329040978
6 0.56714329040978

This shows x ≈ 0.56714329040978.

Problem 16 (4.7.2) Apply Newton’s method using x0 = 1 to solve

arctan(x)− 1 = 0.

Solution. After computing

f(x) = arctan(x)− 1 and f ′(x) =
1

1 + x2
,

I wrote a program in C that looked like

1 #include <stdio.h>
2 #include <math.h>
3

4 double f(double x){
5 return atan(x)-1;
6 }
7 double df(double x){
8 return 1/(1+x*x);
9 }

10 double g(double x){
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11 return x-f(x)/df(x);
12 }
13 int main(){
14 double x=1.0;
15 printf("#%10s %20s\n","n","x_n");
16 for(int n=0;n<7;n++){
17 printf("%11d %20.14g\n",n,x);
18 x=g(x);
19 }
20 return 0;
21 }

The output was

# n x_n
0 1
1 1.4292036732051
2 1.5500620800555
3 1.557383215089
4 1.5574077243818
5 1.5574077246549
6 1.5574077246549

This shows x ≈ 1.5574077246549.

Problem 17 (4.7.3) Apply Newton’s method using x0 = 10 to solve

ln(x)− 3 = 0.

Solution. After computing

f(x) = log(x)− 3 and f ′(x) =
1

x
,

I wrote a program in C that looked like

1 #include <stdio.h>
2 #include <math.h>
3

4 double f(double x){
5 return log(x)-3;
6 }
7 double df(double x){
8 return 1/x;
9 }

10 double g(double x){
11 return x-f(x)/df(x);
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12 }
13 int main(){
14 double x=10.0;
15 printf("#%10s %20s\n","n","x_n");
16 for(int n=0;n<7;n++){
17 printf("%11d %20.14g\n",n,x);
18 x=g(x);
19 }
20 return 0;
21 }

The output was

# n x_n
0 10
1 16.97414907006
2 19.831041895899
3 20.08391777272
4 20.085536857924
5 20.085536923188
6 20.085536923188

This shows x ≈ 20.085536923188.
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