Idea, Use the spectral mapping theorem to find other eigenvalues other than just the one with largest magnitude...

Define a new matrix $B=A-\alpha I$
How do the eigenvalues of B compare with eigenvalues of A ?
Hit ξ be an eigenvector of A with eigenvalue λ.
then $A \xi=\lambda \xi$.
What about B?

$$
\begin{aligned}
B \xi=(A-\alpha I) \xi & =A \xi-\alpha \xi \\
& =\lambda \xi-\alpha \xi=(\lambda-\alpha) \xi
\end{aligned}
$$

Therefore ξ in also an eigurrector of B, but usith shifted eigenvalue given by $\lambda-\alpha$.

Suppon the ispenvalues of A are given by

$$
\lambda_{1}=3, \quad \lambda_{2}=4, \quad \lambda_{3}=6
$$ eigenvectors $\begin{array}{llll}\xi_{1} & \xi_{2} & \xi_{3} \\ \end{array}$

Power iteration.

$$
\begin{aligned}
& y_{n+1}=A x_{n} \\
& x_{n+1}=\frac{y_{n+1}}{\left\|y_{n+6}\right\|}
\end{aligned}
$$

Then x_{n} "converges" to the eigenvector ξ_{3} and

$$
\frac{x_{n} \cdot A_{1} x_{n}}{x_{n} \cdot x_{n}} \rightarrow \lambda_{3} \text { as } n \rightarrow \infty
$$

julia> x0=rand(3)
3-element Vector\{Float64\}:
0.21670536054982703
0.5060992463089435
0.8797618172562653
julia> x=x0
for $\mathrm{j}=1: 100$ global x, y $\mathbf{y}=A * \mathbf{x}$ $x=y / n o r m(y)$
end
julia> x
3-element Vector\{Float64\}:
0.7641894106318069
0.47403405928409253
-0.4373857054326958
5.999999999999999

T Set a random starting rector
\uparrow
ar expected, this
number is chore to 6 , since that's the eigenvalue of largest magnitude.

To find another eigenvector and rigenvalue we use a simple form of the spectral mapping theorem to shot the eigenvalues of A so a dottirent one has the largest magnitude...

Since we just found the eigenvalue $\lambda_{z}=6$, me can map that ujenvalue to zero so it has the smallest magnitude. The a different eirgurvector will be found.

Shit by 6
$B=A-G I$ eigenvalues of B are noe the shifts of the eigenvalues of A

which means $-3+6=3$ is the eigenvalue of the anginal matrix A. Shifted power method I

Shifted inverse pourer methodic..
Define $B=(A-\alpha I)^{-1}$
How are the eigenvalues of B related to A?
That dolisit Jet ξ be au sigqurector of A with work, so try aching thin the
ofherway. $\quad B \xi=(A-\alpha I)^{-1} \xi=$?
It ξ be an eigenvector of B with value β. Thus $B \xi=\beta \xi$

$$
B \xi=(\dot{A}-\alpha I)^{-1} \xi=\beta \xi
$$

Want to reorganize this
Since $B^{-1}=A-\alpha I$ to identify on liger value of A
Thus

$$
\begin{aligned}
& \xi=(A-\alpha I) \beta \xi \\
& \xi=\beta A \xi-\alpha \beta \xi \\
& (1+\alpha \beta) \xi=\beta A \xi \\
& A \xi=\left(\frac{1+\alpha \beta}{\beta}\right)^{2} \xi \text { That's the eigenvalue. }
\end{aligned}
$$

Thus ξ is also an risen rector of A worth econ value $\frac{1+\alpha \beta}{\beta}=\frac{1}{\beta}+\frac{\alpha}{\alpha}=\lambda$

where β is the eigenvalues of B and A is the eeqpusaluer of A.

Consider these eigenvalues again...

$$
\begin{array}{ccc}
\frac{1}{3-4.5}, & \frac{1}{4-4.5)} & \frac{1}{6-4.5} \\
-\frac{2}{3}, & -2, & \frac{2}{3}
\end{array}
$$

now the second wiscuvalue has the loresest magnitude...
for $\mathrm{j}=1: 100$ global x, y $\mathbf{y}=\mathrm{B}^{*} \mathrm{x}$ $x=y / \operatorname{norm}(y)$
end
julia> x
3-element Vector\{Float64\}:
-0.6286347815166934
0.5862018221507268
0.5110633377328362
map the eigenvalue of B bock to an eigenvalue of A (spectral Mapping) using the relation

NoTE!
This method required one to guess that $\alpha=4.5$ was close to the ligenvalue being searched for ... as the iteration converges, one obtains a better approximations of that eigenvalue which can be used to speed convergence.

Suppose you
plug in initial guess

3×3 Matrix\{Float64\}:
julia> $\mathrm{y} 1=\mathrm{B} * x 0$
3-el x1=y1/norm(y1)
3-element Vector\{Float64\}:
4 one iteration
-0.24052614750177
-0.7572713849964365
new guess for eigenvalue

use the new shift

a better guests for the ligunsalue...
Continue in this way results in accelerated convergence similar (but bot asfasit) as Newton's method.
use best shift so far
julia> B=inv(A-3.9629049493121054*I)
3×3 Matrix\{Float64\}:
$\begin{array}{rrr}6.41948 & -15.9679 & -6.94759 \\ -5.38097 & 15.3468 & 6.69918\end{array}$
$-5.81931 \quad 13.2132 \quad 4.64386$ another iteration
julia> $\begin{aligned} y 3 & =B * x 2 \\ \text { xS } 3 & =y 3 / \text { norm (yb) }\end{aligned}$
3-element Vector\{Float64\}:
-0.6289807133628148
0.5875022772401237
0.5091407825496536
*approximation of the eigenvalue is
already quite good...

Don book calls this shifted-inverse
iteration by a different name

