
Username: guest
Password: math466

Float64 is the 64-bit floating point
we discussed last time...

Define functions simple way in Julia...

Define functions the complicated way...

Edit by pressing arrow up and then arrow back. Insert an additional
line in the REPL by pressing alt+return...

The initial condition for Newton's method...

Create a block of code by adding a line using alt+return

then enter the rest
of the loop...

The REPL is interactive so it will run when you press return
after entering the final end.

It's double printing each number
because there is also a println
in the function g(x)

Press up arrow until you get back to the definition of g(x) in
the command history...

Now press back arrow to move
the cursor into the block of code

After deleting the extra println
using the backspace key press
return to evaluate the new
definition of g(x)

Now press up arrow to get back to the loop and press return again
to execute it...

Julia also has the ability to work with extended precision arithmetic,
similar to Python. Simply change the definition of x0 to be a big
number. Then the change is dynamically propagated throughout
the program...

The type is no longer Float64, but instead a number with lots of digits.

It is possible to adjust how many digits the big numbers used...up to
hundreds, thousands and hundreds of thousands...one won't set any
world records for computing the number of digits in pi, but one can
definitely obtain far more digits than anyone would ever want...

Press up arrow to run the loop again...

The fact that only two more iterations for a total of six are needed to
obtain all the digits illustrates how fast Newton's method converges...

The number os significant digits doubles at each iteration...

If you exit Julia, the workspace is cleared...Let's copy everything with
the mouse into an editor for safe keeping...

Note, we actually did this little bit at a time during class, but you can
always scroll back through the terminal session or use the up arrow
key to review all the commands you've typed...

When copying text from the terminal window use ctrl+shift+c
to put things in the mouse...

When pasting text into the editor using ctrl+v

It's often easier to work the other way...typing everything into the
editor to begin with and then pasting things into Julia as needed.

When copying text from the editor use ctrl+c

When pasting text into the Julia terminal use ctrl+shift+v

Here is the file from the editor...this file is also available by clicking
on the link from the class webpage...

Save the file newton.jl in a folder called sep02 to keep our work
for the class organized...note that since we are using the guest
account in the computer lab today, all our work will be lost when
the computer reboots, but never mind...I'll post it on the web...

Use exit() to quit Julia... you can also type ctrl-d to exit...

Now, lets change to the sep02 folder and run Julia again...

To load the file newton.jl type include...

press return to run the script...

Oh no! There is an error... And it fills the screen...

Remember, that Julia includes a just-in-time compiler running behind the
scenes to make things run fast... if all those turning wheels and gears
get stuck and this is what happens...the verbosity of the error message
and stack trace is irritating... still, it runs fast when it works, and Julia
is generally easier than writing Fortan...

In this case the error is related to differences between running a script
from the REPL compared to from a file... All that stuff about soft scope
is related to x being used inside a for loop that is not inside a function...

These problems go away if one uses Julia like a programming language
and writes a main function such as one might in Java or C...

Never mind that... right now it is more convenient to work with scripts...

The problem can be fixed by adding global x inside the loop to resolve
the ambiguity that happens with the soft scope...whatever that is...

The new version of newton.jl look like

Now it's possible to run the script from Julia...

Depending on the order in which the number are added one gets
a different answer...thus addition no longer satisfies the usual rules
of algebra once rounding is taken into account...

Let's try to make an example on the computer...

General rule: Add the smaller numbers first to get the more
 accurate answer.

That was easy...maybe it
never works...

Maybe a=1/3 was the problem... try changing it...

So sometimes addition is associative...sometimes not...

