Three Stage Runge-Kutta Methods
1a. The Shu-Osher TVD Runge-Kutta scheme given by the tableau

0			
1	1		
$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	
	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{2}{3}$

Find the truncation error and order for this method.
1b. Use the Shu-Osher TVD Runge-Kutta scheme to approximate the solution to

$$
y^{\prime}=y^{2} \cos (t), \quad y(0)=0.8
$$

on the interval $[0,8]$. Graph your solution.
1c. The exact solution to this equation is

$$
y(t)=\frac{y_{0}}{1-y_{0} \sin (t)} .
$$

Let y_{n} be the approximation of $y(8)$ obtained by the Shu-Osher TVD Runge-Kutta scheme using n equal steps of size $h=8 / n$. Graph $\log \left|y_{n}-y(8)\right|$ versus $\log h$ to verify the order of convergence found in part 1a numerically.

1d. [Extra Credit and for Math/CS 667] The classical Runge-Kutta scheme and the Nystrom Runge-Kutta schemes are given by

respectively. Let z_{n} be the approximation of $y(8)$ obtained from the classical RK scheme and w_{n} be obtained from the Nystrom RK scheme using n equal steps of size $h=8 / n$. Compare $\log \left|z_{n}-y(8)\right|$ and $\log \left|w_{n}-y(8)\right|$ to the values of $\log \left|y_{n}-y(8)\right|$ for $n=50$ and $n=100$. Which scheme is preferrable when solving the equation in part 1 b ?

