Math 467 Final Version A

This is a take-home final exam. Please work independently. If you have questions about the exam feel free to email me at ejolson@unr. edu or meet with me in my office.

1. This question is similar to 3.8 followed by 4.6 from our text.
(i) Derive the three-stage Runge-Kutta method that corresponds to the collocation points

$$
c=\left[\begin{array}{c}
\frac{1}{2}-\frac{\sqrt{3}}{4} \\
\frac{1}{2} \\
\frac{1}{2}+\frac{\sqrt{3}}{4}
\end{array}\right] .
$$

(ii) What is its order?
(iii) Find $r(z)$ for this method and plot the linear stability domain \mathcal{D}.
(iv) Is this method A-stable?
2. Problem 5.6 parts a,b and c.
3. The Lorenz system is a three dimensional autonomous ordinary differential equation of the form

$$
y^{\prime}=f(y)
$$

where $y(t)$ is a vector in \mathbf{R}^{3} and

$$
f(y)=\left[\begin{array}{c}
-10 y_{1}+10 y_{2} \\
28 y_{1}-y_{2}-y_{1} y_{3} \\
y_{1} y_{2}-(8 / 3) y_{3}
\end{array}\right]
$$

Use any numerical method you prefer to compute $y(1)$ given the initial condition

$$
y(0)=\left[\begin{array}{c}
2 \\
3 \\
15
\end{array}\right]
$$

Find each component of the vector $y(1)$ to at least 5 significant digits.
4. Matlab has a builtin fast Fourier transform function called fft.
(i) Check how fast it is by computing the time T_{N} to perform a transform of length $N=2^{n}$ for values of n ranging from 8 to as large as your computer can handle. Make each timing three times and take the smallest one for T_{N}. Note that the first timing is usually the longest because of initialization code that has to be run each time a transform of a different length is used. Plot a graph of T_{N} versus N. Is T_{N} closer to $N \log N$ or N^{2} ? Explain.
(ii) Repeat the above where $N=p_{i}$ and p_{i} is a sequence of prime numbers. Note that a prime numbers can be found in Maple using the isprime command. In this case is T_{N} closer to $N \log N$ or N^{2} ? Explain.

