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,mq (recall that @ = @™1),
Tet us review briefly the stages in this, the Hockney method, estimating their
computational cost.

To start with, we have the vectors by, bg, ..., by, € B™ and we form the
products ¢z = Qby, £ =1,2,. .., ms. This costs O{mimz) operations.

We rvearrange columns into rows, Le., ¢, € R™, £ = 1,2,...,mq, into & €
R™2 5 =1,2,...,m:. This is a purely a change of notation and is free of any
computational cost.

The tridiagonal systems Uy, = €&, 7 = 1,2,...,my, are solved by banded LU
factorization, and the cost of this procedure is Clmyma).

We next rearrange rows into columns, ie., §, € R™, j = ey g Into
g, € R™ 2=1,2,... my. Again, this costs nothing.

Finally, we find the solution of the discretized Poisson equation by forming the
products @y = Qy,, £ =1,2,... ma, at the cost of O(m%mg) operations.

Provided both m; and ma are large, matrix muitiplications dominate the computa-
tional cost. Our first, trivial observation is that, the expense being O(m%mg), it is
a good policy to choose my < mo (because of symmetry, we can always rotate the
rectangle, in other words proceed from row to colwmns, and to rows again). However,
a considerably more important observation is that the special form of the matrix ¢
can be exploited to make products of the form 8 = Qp, say, substantially cheaper
than O(m?). Because of {10.29), we have

o il b nijf
§¢=¢ ; sir : = ¢l ;e 1, F==1,2,...,m1,
g J;pj i(m M) 1 j:zgpjew (WH) e

(12.6)
where ¢ = [2/{mq + 1)]¥/? is a multiplicative constant. Such a product can be per-
formed in a very efficient manner hy using a fast Fourier transform, the theme of the
next section. :

An important remark is that in this section we have not used the fact that we are
solving the Poisson equation! The crucial feature of the underlying linear system is
that it is block-TST and each of the blocks is itself & TST matrix. There is nothing
"t prevent us from using the same approach for other equations that possess this
structure, regardless of their origin. Moreover, it is an easy matter to extend this
. approach to, say, Poisson equations in three dimensions with Dirichlet conditions
- along the boundary of a parallelepiped: the matrix partitions into blocks of block-
TST matrices and each such block-TST matrix is itself composed of TST matrices.

12.2 The fast Fourier transform

Let d be a positive integer and denote by Iy the set of all complex sequences x =
{%};’im which are periodic with period d, i.e., which are such that =, 4 = z;, § € &,
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It is an easy master to demonstrate that I1; is a linear space of dimension d over the
complex numbers € (see Exercise 12.3}.

Let
ex 2mi
Wy B
d B d

denote the primitive root of unity of degree d. A discrete Fourier fransform (DFT) s
a linear mapping 7 defined for every o € 1y by

y = Fyr where Yy = E Zw;jgwg, JjE L (12.7)

Lemma 12.1  The DFT F;, os defined in {12.7), maps Ty into itself. The MOpping
s inwvertible and

T = f;’-y where Ty = ng{g?}j: tel. (12.8)

i=0
Moreover, Fy is an isomorphism of 11y onto itself (A.1.4.2 and A.2.1.9).

Proof  Since wy is a roct of unity, it is true thas wg = wd_d = 1. Therefore it
follows from (12.7) that

- d-
1 1
j+d}é’ -
Uﬁd—a; T = E[de Ti = Yy, ez,

and we deduce that y € II;. Therefore Fy indeed maps elements of [T, into elements
of H(;.

To prove the stipulated form of the inverse, we dencte w := Fyx, where & has
beer defined in (12.8}. Our first observation is that, provided y € [Iy, it is also true
that @ € [i; (just swap minus to plus in the ahove proof). Moreover, changing the
order of summation,

1 d1 1 d—
, -m[f . wmt’
§2 a3 St
" =D f==0 3
d 1 fd—

:
Z Zwé‘iim)ﬁ Y5, meEZ.

j 0 \Né=0

Within the parentheses Is a geometric series that can be summed explicitly. If j # m,
we have
Ag—m)d

d—1 "
ot _
Z w((ij i = 1 dj—m. -
#=0 -
because w;d =1 for every ¢ € Z\ {0}; whereas in the case § = we obtain

d—

d—1
Z {g—mid Z 1=d
£=0

R
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We thus conclude that wy, = 1y, m € Z, hence that w = y. Therefore, (12.8) indeed
describes the inverse of Fy.

The existence of an inverse for every @ € Iy shows that Fy is an isomorphism. To
conclude the proof and demonstrate that this DFT maps I, onto iiself, we suppose
that there exists a ¢ € [I; that cannot be the destination of Fyx forany = € [ig. Let us
define & in terms of (12.8). Then, as we have already abserved, & € 4 and it follows
from our proof that § = Fu&. Therefore § is in the range of Fy, in contradiction to
our assumption, and we conclude that the DFT Fy is, indeed, an isomorphism of Iz
onto iteelf. ]

Tt is of interest so mention an alternative proof that Fy is onto. According to a
classical theorem from linear algebra, a linear mapping 7' from & fnite-dimensional
linear space V to itself is onto if and only if its kernel kerT' consists just of the zero
clement of the space (ker T is the set of all w € V' such that Tw = 0; see A14.2}
Letting o € ker Fy, (12.7) yields

e

}:w;j%fzo, j=0,1,...,d— 1. (12.9)
£=0

This is a homogeneous linear system of d equations in the d unknowns zp, 21, ..., Td-1-
Tts matrix s a Vandermonde matrix (A.1.2.5) and it is easy to prove that its deter-
minant satisfies '

i)

(&%

d
~2{d-1) d -1

. =TI st —wi?) #0

: 4=1 =0
o —d{d—1)
“
Therefore the ouly possible solution of (12.9) s zp = 71 = -+ = Ty-1 = 0 and we
“deduce that ker F; = 0 and the mapping is onfo Ilg.

¢ Applications of the DFT It is difficult to overstate the importance of
the discrete Fourier transform to a multitude of applications, ranging from
numerical analysis to control theory, and from computer science to coding
theory to time series analysis. ... In the sequel we employ it to provide a fast
solution to discretized differential equasions but here we give another example
that shows the power of the DFT: approximation of the Fourier coe Hicients,
also known as Fourier harmonics, of a periodic function. This theme finds
its application in the next section, as well ag in numerous other places across
applied mathematics, science and engineering.
Let g be an integrable complex-valued function, defined for all 2 € R, and
periodic with period 2 (ie., g{z + 2r) = glz) for all x € R). The Fourter
transform of ¢ is the sequence {Jm = oo, Where

G = — / glrle" ™ dr,  me L (12.10)
27 Jy
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Fourier transforms feature in numerous branches of mathematical analysis
and its application: the library shelf labelled ‘harmonic analysis’ is, to a very
large extent, devoted to Fourler transforms and thely ramifications. More to
the point, as far as the subject matter of this book is concerned, they are
crucial in the stability analysis of numerical methods for PDEs of evolution
{see Chapters 13 and 14).

The ubiquity of Fourler transforms in so many applications means that the
task of approximating (12.10) numerically is among the most important prob-
lems in scientific computing, The obvious approach is to pursue the logic of
Section 3.1 and replace integration by finite summation, i.e., by quadrature.
It is not difficult to prove that, provided g{0) = g(2r}, the best quadrature
nodes - our eguivalent of the Gaussian quadrature nodes of Section 3.1 -
are equidistant along the interval [0, 2], and furthermore the corresponding
quadrature weights are all equal: In other words, given an integer v > 1, we
approximate

. s 1 fomg =2mimi\ 1%
o 7 Py :z;Zg —= e | ——— :;‘Z% g, (12.11)
G=0

J=0

where g; = g{27j/v}, j = 0,1,...,v — 1. In a rare display of good mathe-

matical fortune, virtue — Gaussian nodes — combines with ease of application:

equidistant nodes and equal weights,

Of course, (12.11) makes sense only for a finite set of indices m and we are

safe only if we restrict this to just v values. Suppose for simplicity that v
,#/2}. Replacing m by

£~ 1/2 + 1, the identity wi/® = —1 gives

] P b . -
Py = ;; wu_(f_r)/z"t_}')"j’gj — ( )

Feld
= —w,  {(Fug)s £=0,1,... 01,

where g = {g; 52 e € I is obtained by letting gj..., = g; for every j =

0,1,...,¥ — 1 and integer s. Ir other words, (12.11) is nothing other but a
DFTI

Suppose that the Fourier series corresponding to g is absolutely convergent,
hence '

o0
glz) = > ™, 0Lz <om (12.12)
]
(This, incidentally, is the formula that reverses the action of the Fourier trans-
form. Its representation of g as a linear combination of harmonics is perhaps
the most important reason for the popularity of Fourier series - and Fourier
transforms - in applications.} Lefting x = 2737 /v, we obtain

J"), g=0,1..,r—1,
v
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and substitution into (12.11) yields

1 v—1 oo 1 o0 v—1

FA—— (T S NS . R 5 {(k—m)j

Py, == W Z‘-‘JU Z kaﬂ " ”z; Z ak Zwu ) .
F=0 =0

=00 ka=—0x

We are justified in replacing the order of summation since we have assumed
that the Fourier series converges absolutely. However, as we have already

-1
ijr |, rmod v # 0,
: v v, rmod v =0
J=0
and we deduce that the error in our approximation of the Fourier coefficients

m 18

seen,

>0
hﬂ’l - g'm == Z g'mnl»jlw (1213)
j=-c0

J#0
Therefore, we can expect the error to decrease rapidly as a function of v if
the Fourier coefficients of g decay fast for large [kl.
The rate of decay of Fourier coefficients is known for a large variety of func-
tions. In particulas, suppose that (12.12) converges for alt 2 € € such that
0 < Rez < 2%, Imz| < o for some o > 0, Then it is possible to show that

igp] < ce”FE ke,

where ¢ > 0 is a constant. Therefore, by dominating (12.13) with a geometric
series we can deduce that

— i

[P = Gl < 2¢ (Y_E:'_E) cosly mey, imi < p—1.

Therefore, the error in replacing the Fourier integral by a DEFT decays expo-
&

nenfielly with v.
On the face of if, the evaluation of the DE'L' (12.7) {or of its inverse) requives Q(d?)
" operations, since, by periodicity, it is obtained by multiplying a vector in C% by a
d % d complex matrix. Tt is one of the great wonders of computational mathematics,
however, that this operation count can be reduced a very great deal. Let us assume
for simplicity that d = 2%, where n is a nonnegative integer. It is convenient to replace
Fy by the mapping Fy = dFqg; clearly, if we can compute Fjx cheaply, just Q)
operations will convert the result to Fax.
Let us define, for every & & Ilg,

zlel = {re 72 oo and 2l = Lo 32

Since 2l xlo! € Mypg, we can make the mapppings

y = Fypatt and P

ol

o
- d/?m
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Let y = Fjz. Then, by (12.7),

d—1 gt
e —jt
gy = ) wy we = Z woi Tp
£=0) £=0
gn=1_y gu-1 g
— 24t : —j{ze41 )
= E wg,,_j Tog E wgnj( ):172;3"+,,1, d=0,1,...,2" - L
£z} Frnl}
However,
) :
O.JQ_;S;. = w;n»l . RS Z,
therefore
gredy anmtoy
—47 —j -l
yi = E wo Ly wop + Wyl Z Wl ooy
§=0 el
= wghy, =01, -1 (12.14)

In other words, provided that y'® and yl®l are already known, we can synthesize them
into ¥y in O{d) operations.

Incidentally — and before proceeding any further — we observe that the number of
operations can be significantly reduced by exploiting the identity wye = —1, 5> 1
Hence, {12.14) vields '

. .
y; = yj] + wz.f?j;u]x _ .

[e] L, deert o e] _ - 7, 1ol J=01., 2
Yjrom-1 = Yiygu.y T Do Yppogn1 = Yy — Wi Yis
(recall that ylel, 4o € Tlpn-1, therefore y,{jiz,,__l = y;e] ete.). In other words, to combine

. o ‘

v’ and yl, we need to form just 27~1 products u/zj 13;;03, subsequently adding or
subtracting them, as required, from y:[fe] for j =0,1,...,27° 1

All this, needless to say, is based on the premise that yiﬁ"] and ygc’} are known,
which, as things stand, is false. Having said this, we can form, in & similar fashion to
that above, !¢ from J’r;/g‘.'z}[ee] ) }—;/43:{@0] € T4, where

2o (g} e 2 = {20}
Likewise, ¢! can be also obtained from two transforms of length d/4. This procedure
can be iberated until we reach transforms of unit length, which, of course, are the
variables themselves.

Practical implementation of this procedure, the famous fasi Fourier transform
(FEL), proceeds from the other end: we commence from 2" transforms of length 1
and synthesize them to 27! transforms of length 2. These are, in turn, combined
into 272 transforms of length 22, next into 272 transforms of length 2° and so on,
antil we reach a single transform of length 27, the object of this whole exercise.

Assembling 2717 transforms of length 2577 into 2" transforms of double the
length costs O(27° x 2°) = O{d) operations. Since there are n such ‘layers’ the total
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length 1

length 2

length 4

length 8

length 16

Figure 12.1  The assembly pattein in FFT for d = 16 = 2%

expense of the FET is a multiple of 2%n = dlog, d operations. For large values of d
this results in a very significant saving, compared with naive matrix multiplication.

The order of assembly of one set of transforms into new transforms of twice the
length is important — we do not just combine any two arbitrary ‘strands’! The correct
arrangement is displayed in Figure 12.1 in the case n = 4 and the general rule is
obvions. It can be best understood by expressing the index #in a binary representation,
bt we chioose not to dwell further on that issue.

Having introduced FFTs, we use them to decrease the computational cost of the
Hockney method from Section 12.1. Recali that the problematic part of the calculation
consists of 2me products of the form (12.6). We recognize readily each such product
as an inverse DFT in disguise,

Ty
s =clm g Pyl oo | £=1,2,...,m1.
Ju=0)

To bring this into a proper DFT form, we set pj = 0,7=my+1lm+2,....2m;+ 1
and extend the range of £ to {0,1,...,2my + 1}. Thig yields

Qe+ 1

Wy ﬁ ‘
sy = clm E Pitm 42 | - P =0,1,...,2my + 1,
=0

that is
. 1 o~
F=clmFy, D

where f, 8 € [lom,+2. Finally, we discard sy and Smo 41, Smy+2r 0 0 S2mp e+l and retain
the remaining values as the result of our calculation.
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Even when we calculate a system twice the size and employ complex arithmetic,
this procedure results in substantial savings even for moderate values of m,.!

The fast Fourier transform is instrumental to the performance of most fast Pog.
son solvers, and we return to this theme in the next section, in the coutext of fag
solution of the Poisson equation in a dise. There are exceptions and, in the commentg
foliowing this chapter, we briefly mention the method of cyclic odd—even reduction gng
Jactorization, which requires no FFT,

This is not the only application of FFT to the mumerical solution of PDEs -
indeed, it is bardly the rnost important. This distinction, in fairness, belongs g
spectral methods, whose very power rests on the availability of FFTs and other “ast
transforins’ :

12.3 Fast Poisson solver in a disc

Let us suppose that the Poisson equation V2u — go s given in the open unit disc
D= {{r,y) cB? : 2? +4? < 1},
together with Dirichlet boundary conditions along the umit circle;
u{cosf,sin #) = ¢(8), 0<4 < 2n, (12.15)

where $(0) = ¢(2m). 1t is convenient o translate the equation from Cartesian to polar
coordinates. Thus, we let

o{r,8) = u(rcosf,rsind),
O<r<l 0<g<2r
g(r,8) = golrcosd, rsinf),

The form of V? in polar coordinates readily gives us
Hu  1dv 1 8%y
Bre T dr 2 g2
The boundary conditions, however, are more delicate. Switching from Cartesian to
polar means, in essence, that the disc ID is replaced by the square

=g, O<r<l, 0<6<o2r (12.18)

Iﬁ):{(r,@) 0 <r <], 0<48<o7)

Ualike I, which has just one boundary ‘segment’ — its circurnference — the set D
boasts four portions of boundary and we need to allocate appropriate conditions at
ail of them.

The segment r = 1,0 < # < 27, is the easiest, being the destination of the original
boundary condition (12.15). Hence, we set

v(1,6) = $(0), 0<6< o (12.17)

Next in order of difficulty are she line segments 0 < r < 1,8 =0 and 0 <1 <1,
@ = 27 They both correspond to the same segment, namely 0 < x < 1, y = 0, in the

TAs a matter of fact, the caleulation can be performed in real arithmetic, using the sc-called fast
sine transform.




