Math/CS 467/667: Lecture 2

In 1814 Gauss [2] developed a method for approximating definite integrals using an optimal quadrature formula of the form

$$
\int_{a}^{b} f(x) d x \approx \sum_{k=0}^{n-1} w_{k} f\left(x_{k}\right)
$$

that is exact for polynomials of degree $2 n-1$. Since a $2 n-1$ degree polynomial is determined by $2 n$ coefficients and the values of x_{k} and w_{k} for $k=0,1, \ldots, n-1$ represent $2 n$ parameters, the existence of such a formula seems reasonable. To overcome the difficulty of directly solving the resulting $2 n$ non-linear equations for $2 n$ unknowns, Gauss employed the family of orthogonal polynomials that were developed by Legendre [4] as solutions to differential equations. Extensions of these techniques were provided by Christoffel [1] in 1877 who obtained the existence and uniqueness of optimal quadratures for a general class of weighted integrals. Additional information may be found in Gautschi [3].

Adrien-Marie Legendre on the left; Carl Friedrich Gauss center; Elwin Bruno Christoffel on the right.

Orthogonal Polynomials

Rather than following Legendre who describes the orthogonal polynomials p_{n} of degree n on the interval $[-1,1]$ as solutions to the differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0
$$

we instead use the Gram-Schmidt orthogonalization process.
Consider the inner product and norm on the space of integrable functions defined by

$$
(f, g)=\int_{-1}^{1} f(x) g(x) d x \quad \text { and } \quad\|f\|=\sqrt{(f, f)}
$$

The orthogonal polynomials

$$
\left\{p_{k}: k=0,1, \ldots n\right\}
$$

may be obtained using the Gram-Schmidt orthogonalization procedure with respect to the above inner product and norm starting with the standard polynomial basis

$$
\left\{x^{k}: k=0,1, \ldots n\right\}
$$

In particular, the orthogonal polynomials are given by

$$
\begin{array}{rlrl}
v_{0} & =1 & p_{0} & =\frac{v_{0}}{\left\|v_{0}\right\|} \\
v_{1} & =x-\left(x, p_{0}\right) p_{0} & p_{1} & =\frac{v_{1}}{\left\|v_{1}\right\|} \\
v_{2}=x^{2}-\left(x^{2}, p_{0}\right) p_{0}-\left(x^{2}, p_{1}\right) p_{1} & p_{2} & =\frac{v_{2}}{\left\|v_{2}\right\|} \\
\vdots & & \vdots \\
v_{n} & =x^{n}-\sum_{k=0}^{n-1}\left(x^{n}, p_{k}\right) p_{k} & p_{n} & =\frac{v_{n}}{\left\|v_{n}\right\|} .
\end{array}
$$

Construction of Gauss Quadrature

The points x_{k} and the weights w_{k} used in the approximation

$$
\int_{-1}^{1} f(x) d x \approx \sum_{k=0}^{n-1} w_{k} f\left(x_{k}\right)
$$

that we shall call Gauss quadrature are given as follows. Let x_{k} for $k=0,1, \ldots, n-1$ be the n distinct roots to the orthogonal polynomial p_{n} of degree n. Thus $p_{n}\left(x_{k}\right)=0$ for $k=0,1, \ldots, n-1$. We remark without proof that the x_{k} 's are real and moreover that $x_{k} \in[-1,1]$. Now, consider the system of n linear equations given by

$$
\int_{-1}^{1} x^{j} d x=\sum_{k=0}^{n-1} w_{k} x_{k}^{j} \quad \text { for } \quad j=0,1, \ldots, n-1
$$

in the n unknowns w_{k} where $k=0,1, \ldots n-1$. Since the x_{j} 's are distinct this system is non-singular. Therefore, there exists a unique solution for the w_{k} 's. This specifies the x_{k} 's and w_{k} 's in the Gauss quadrature formula.

Accuracy of Gauss Quadrature

In this section we prove Gauss quadrature is exact for polynomials of degree $2 n-1$.
Proof. Let p be a polynomial of degree $2 n-1$. Since the p_{n} has degree n, the division algorithm implies there exist polynomials r and q of degree $n-1$ such that

$$
p(x)=q(x) p_{n}(x)+r(x) .
$$

Claim that

$$
\int_{-1}^{1} r(x) d x=\sum_{k=0}^{n-1} w_{k} r\left(x_{k}\right)
$$

Write

$$
r(x)=\sum_{j=0}^{n-1} a_{j} x^{j}
$$

Then by the choice of w_{k} 's we have

$$
\begin{aligned}
\int_{-1}^{1} r(x) d x & =\int_{-1}^{1} \sum_{j=0}^{n-1} a_{j} x^{j} d x=\sum_{j=0}^{n-1} a_{j} \int_{-1}^{1} x^{j} d x \\
& =\sum_{j=0}^{n-1} a_{j} \sum_{k=0}^{n-1} w_{k} x_{k}^{j}=\sum_{k=0}^{n-1} w_{k} \sum_{j=0}^{n-1} a_{j} x_{k}^{j}=\sum_{k=0}^{n-1} w_{k} r\left(x_{k}\right) .
\end{aligned}
$$

Since p_{n} is orthogonal to all polynomials of degree $n-1$ or less and $p_{n}\left(x_{k}\right)=0$, then

$$
\begin{aligned}
\int_{-1}^{1} p(x) d x & =\int_{-1}^{1}\left(q(x) p_{n}(x)+r(x)\right) d x=\left(q, p_{n}\right)+\int_{-1}^{1} r(x) d x \\
& =\int_{-1}^{1} r(x) d x=\sum_{k=0}^{n-1} w_{k} r\left(x_{k}\right)=\sum_{k=0}^{n-1} w_{k}\left(q\left(x_{k}\right) \cdot 0+r\left(x_{k}\right)\right) \\
& =\sum_{k=0}^{n-1} w_{k}\left(q\left(x_{k}\right) p_{n}\left(x_{k}\right)+r\left(x_{k}\right)\right)=\sum_{k=0}^{n-1} w_{k} p\left(x_{k}\right)
\end{aligned}
$$

This finishes the proof.

References

1. E. B. Christoffel, Sur une Class Particulière de Fonctions Entiéres et de Fractions Continues, Ann. Mat. Pura Appl., Vol. 8, 1877, pp. 1-10.
2. C. F. Gauss, Methodus Nova Integralium Valores per Approximationem Inveniendi, Comment. Soc. Reginae Sci. Gottingensis Rencentiores, Vol. 3, 1815, pp. 163-196.
3. W. Gautschi, Construction of Gauss-Christoffel Quadrature Formulas, Math. Comp., Vol 22, 1968, pp. 251-270.
4. A. M. Legendre, Recherches sur la Figure des Planètes, Histoire de l'Académie Royale des Sciences, 1784, pp. 1-370.
