
Math/CS 467/667: Lecture 2

In 1814 Gauss [2] developed a method for approximating definite integrals using an optimal
quadrature formula of the form

∫ b

a

f(x)dx ≈
n−1∑
k=0

wkf(xk)

that is exact for polynomials of degree 2n − 1. Since a 2n − 1 degree polynomial is
determined by 2n coefficients and the values of xk and wk for k = 0, 1, . . . , n− 1 represent
2n parameters, the existence of such a formula seems reasonable. To overcome the difficulty
of directly solving the resulting 2n non-linear equations for 2n unknowns, Gauss employed
the family of orthogonal polynomials that were developed by Legendre [4] as solutions to
differential equations. Extensions of these techniques were provided by Christoffel [1] in
1877 who obtained the existence and uniqueness of optimal quadratures for a general class
of weighted integrals. Additional information may be found in Gautschi [3].

Adrien-Marie Legendre on the left; Carl Friedrich Gauss center; Elwin
Bruno Christoffel on the right.

Orthogonal Polynomials

Rather than following Legendre who describes the orthogonal polynomials pn of degree n
on the interval [−1, 1] as solutions to the differential equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0,

we instead use the Gram–Schmidt orthogonalization process.

Consider the inner product and norm on the space of integrable functions defined by

(f, g) =

∫ 1

−1

f(x)g(x)dx and ∥f∥ =
√

(f, f).

The orthogonal polynomials
{ pk : k = 0, 1, . . . n }
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may be obtained using the Gram–Schmidt orthogonalization procedure with respect to the
above inner product and norm starting with the standard polynomial basis

{xk : k = 0, 1, . . . n }.

In particular, the orthogonal polynomials are given by

v0 = 1 p0 =
v0
∥v0∥

v1 = x− (x, p0)p0 p1 =
v1
∥v1∥

v2 = x2 − (x2, p0)p0 − (x2, p1)p1 p2 =
v2
∥v2∥

...
...

vn = xn −
n−1∑
k=0

(xn, pk)pk pn =
vn
∥vn∥

.

Construction of Gauss Quadrature

The points xk and the weights wk used in the approximation∫ 1

−1

f(x) dx ≈
n−1∑
k=0

wkf(xk)

that we shall call Gauss quadrature are given as follows. Let xk for k = 0, 1, . . . , n − 1
be the n distinct roots to the orthogonal polynomial pn of degree n. Thus pn(xk) = 0 for
k = 0, 1, . . . , n − 1. We remark without proof that the xk’s are real and moreover that
xk ∈ [−1, 1]. Now, consider the system of n linear equations given by

∫ 1

−1

xjdx =
n−1∑
k=0

wkx
j
k for j = 0, 1, . . . , n− 1

in the n unknowns wk where k = 0, 1, . . . n − 1. Since the xj ’s are distinct this system is
non-singular. Therefore, there exists a unique solution for the wk’s. This specifies the xk’s
and wk’s in the Gauss quadrature formula.

Accuracy of Gauss Quadrature

In this section we prove Gauss quadrature is exact for polynomials of degree 2n− 1.

Proof. Let p be a polynomial of degree 2n − 1. Since the pn has degree n, the division
algorithm implies there exist polynomials r and q of degree n− 1 such that

p(x) = q(x)pn(x) + r(x).
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Claim that ∫ 1

−1

r(x)dx =
n−1∑
k=0

wkr(xk).

Write

r(x) =
n−1∑
j=0

ajx
j .

Then by the choice of wk’s we have

∫ 1

−1

r(x)dx =

∫ 1

−1

n−1∑
j=0

ajx
jdx =

n−1∑
j=0

aj

∫ 1

−1

xjdx

=
n−1∑
j=0

aj

n−1∑
k=0

wkx
j
k =

n−1∑
k=0

wk

n−1∑
j=0

ajx
j
k =

n−1∑
k=0

wkr(xk).

Since pn is orthogonal to all polynomials of degree n− 1 or less and pn(xk) = 0, then∫ 1

−1

p(x)dx =

∫ 1

−1

(
q(x)pn(x) + r(x)

)
dx = (q, pn) +

∫ 1

−1

r(x)dx

=

∫ 1

−1

r(x)dx =
n−1∑
k=0

wkr(xk) =
n−1∑
k=0

wk

(
q(xk) · 0 + r(xk)

)
=

n−1∑
k=0

wk

(
q(xk)pn(xk) + r(xk)

)
=

n−1∑
k=0

wkp(xk).

This finishes the proof. ////
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