Math/CS 467/667: Lecture 2

In 1814 Gauss [2] developed a method for approximating definite integrals using an optimal
quadrature formula of the form

b n—1
/ f)de = Y wef (o)
a k=0

that is exact for polynomials of degree 2n — 1. Since a 2n — 1 degree polynomial is
determined by 2n coefficients and the values of x; and wy for K =0,1,...,n — 1 represent
2n parameters, the existence of such a formula seems reasonable. To overcome the difficulty
of directly solving the resulting 2n non-linear equations for 2n unknowns, Gauss employed
the family of orthogonal polynomials that were developed by Legendre [4] as solutions to
differential equations. Extensions of these techniques were provided by Christoffel [1] in
1877 who obtained the existence and uniqueness of optimal quadratures for a general class
of weighted integrals. Additional information may be found in Gautschi [3].

Adrien-Marie Legendre on the left; Carl Friedrich Gauss center; Elwin
Bruno Christoffel on the right.

Orthogonal Polynomials

Rather than following Legendre who describes the orthogonal polynomials p,, of degree n
on the interval [—1, 1] as solutions to the differential equation

(1= 2?)y" = 22y’ +n(n + 1)y =0,

we instead use the Gram—Schmidt orthogonalization process.

Consider the inner product and norm on the space of integrable functions defined by

(f.9) = / S@g@ds and (1] = V).

The orthogonal polynomials
{pr:k=0,1,...n}
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may be obtained using the Gram—Schmidt orthogonalization procedure with respect to the
above inner product and norm starting with the standard polynomial basis

{2 k=0,1,...n}.

In particular, the orthogonal polynomials are given by
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Construction of Gauss Quadrature
The points x; and the weights wy used in the approximation
1 n—1
| f@de Y won)
-1 k=0
that we shall call Gauss quadrature are given as follows. Let zp for £ = 0,1,...,n — 1
be the n distinct roots to the orthogonal polynomial p, of degree n. Thus p,(z;) = 0 for
k=0,1,...,n — 1. We remark without proof that the x;’s are real and moreover that

xk € [—1,1]. Now, consider the system of n linear equations given by

1 n—1
/ a;jdzlf;:Zwkaf;fC for 5=0,1,...,n—1
1 k=0

in the n unknowns wy, where £ = 0,1,...n — 1. Since the x;’s are distinct this system is
non-singular. Therefore, there exists a unique solution for the wy’s. This specifies the x;’s
and wy’s in the Gauss quadrature formula.

Accuracy of Gauss Quadrature
In this section we prove Gauss quadrature is exact for polynomials of degree 2n — 1.
Proof. Let p be a polynomial of degree 2n — 1. Since the p,, has degree n, the division

algorithm implies there exist polynomials r» and ¢ of degree n — 1 such that

p(x) = q(@)pn () +1r(2).
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Claim that

Write

Then by the choice of wy’s we have

1 1 n—1 n—1 1
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Since p,, is orthogonal to all polynomials of degree n — 1 or less and p, (zx) = 0, then

/1 p(x)de = /1 (a(@)pa(z) +r(@))dz = (4,pn) + /1 r(x)de

-1 -1 -1

1 n—1

= / r(x)dx = Z wir(zy) = Z wk -0+ T(xk))
-1

_Zwk q(xr)pn(Tr) —H“Ik Zwkpxk

This finishes the proof. ////
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