Math/CS 467/667 Programming Assignment 1

1. The Lorenz system is a three dimensional ordinary differential equation of the form

$$
\frac{d y}{d t}=f(y)
$$

with a given initial condition $y(0)=a$ where $y(t)$ is a vector in \mathbf{R}^{3} and

$$
f(y)=\left[\begin{array}{c}
-10 y_{1}+10 y_{2} \\
28 y_{1}-y_{2}-y_{1} y_{3} \\
y_{1} y_{2}-(8 / 3) y_{3}
\end{array}\right]
$$

Let Y^{n} be an approximation of $y(1)$ obtained using a step size of $h=1 / n$. Define the error

$$
E_{n}=\left\|Y^{n}-y(1)\right\|=\left\{\sum_{i=1}^{3}\left(Y_{i}^{n}-y_{i}(1)\right)^{2}\right\}^{1 / 2}
$$

Show that if $E_{n} \leq K h^{k}$ then

$$
\left\|Y^{n}-Y^{2 n}\right\| \leq K\left\{1+\frac{1}{2^{k}}\right\} h^{k}
$$

2. Write a program to approximate solutions of the Lorenz system using Euler's forward difference method and the initial condition

$$
a=\left[\begin{array}{c}
2 \\
3 \\
15
\end{array}\right]
$$

Compute Y^{n} for $n=64,128,256,512, \ldots, 65536$.
3. Compute Y^{n} using Runge-Kutta methods of orders 2,3 and 4 given by the tableux

respectively, and verify the order by graphing $\log \left\|Y^{n}-Y^{2 n}\right\|$ versus $\log h$.
4. Approximate $y(10)$ to three decimal places. Is it possible to achieve this accuracy using Euler's method? Can you find $y(100)$?

