esson 36

A Nonhomogeneous Dirichlet
 Problem (Green’s Function)

PURPOSE OF LESSON: To show how a nonhomogeneous Dirichlet
problem can be solved by the Green's function approach (the impulse-
response function). This important technique resolves the right-hand side -
of the equation (generally thought of as an input of some kind) into a
continuuwm of impulises (delta functions or point inputs) at the different
points of the domain. The response to cach of these impulses is then found
(Green’s function or the impulse-response function), and then they are
summed (integrated) to give the overall response.

A common problem in applied mathematics is to find the potential in some
region of space in response to a forcing term f(x,y) acting inside the region. In
electrostatics, the potential (volts) in a region D is sought in response to a charge
density f(x,y) throughout that region. A typical example would be to find the
potential inside a circle in two dimensions that satisfies (Poisson’s equation with
zero BC)

1 1
PDE u,, + —u, + _—i;u% = f{r,8)
; 2

BC wu(l8)=0 0=8<2nm

——

(36.1)

Note that we have chosen the boundary values to be zero. If we wanted to solve
the general case, where both the equation and BC were nonhomogeneous, we
could add the Poisson integral formula from Lesson 33 to the solution from this
lesson. _

In order to gain a little intuition about nonhomogeneous differential equa-
tions, let’s consider graphing the solution to the following Poisson’s equation:

PDE Vi = —gq 0<r<l (g a positive constant)
BC .u(i,0)=0 0=6=<lr

Here, the potential (temperature if you like) Is fixed at zero on the boundary,

220 Eliiptic-Type Problems




and the Laplacian of u is always equal to —g¢ inside the circle. Since Viu(p)
measures the difference between ul{p) and the average of its neighbors, Poisson’s
equation says that the surface u(r,9) will always be concave down, so to speak.
In other words, it will look like a thin membrane fixed at the boundary that was
continuously being pushed up by a stream of air from below. If the right-hand
side were a function f(x,y) that changed over the domain, then the concavity at
each point would change.

We now get to the major part of this lesson: to introduce Green's function
and solve equation (36.1).

First, however, we must introduce the notion of potential due to point sources
and sinks.

Potenticls from Point Sources and Sinks

In solving a nonhomogeneous linear equation, it is sufficient to solve the equation
with a point source, since we can find the solution fo the general problem by
summing the responses to point sources. Our goal here is to find the potential
in some region of space due to a point source {or sink). We can interpret these
points in a variety of wayvs. In heat flow, we could think of a source as a point
where heat is created and a sink as a point where it is destroyed. On the other
hand, in electrostatics, a point source would be a single positive charge (proton),
while a sink would be a single negative charge {electron). In any case, whatever
the interpretation, we will now find the potential «(r) in two dimensions that
depends on a single point source (the potential in three dimensions is left as a
problem).

Suppose we have a single point source of magnitude + g located at the origin.
It'is clear that the heat {or whatever) will flow outward along radial lines, and,
hence, if we compute the total outward flux across a circle of radius r, we have
the situation described in tfigure 36.1

Total outward flux across the circle m= = L ulryr do

= — 2, (7)

¥ Heat generated
at the origin

FIGURE 361 Radiai flow of heat due to o point source.
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But the outward flux must be equal to the heat generated within the circle
(conservation of energy), and so we have

—2mru(r) = g

Solving this éimpie differential equation for u(r), we get

q g 1
= ok |y o= l
u(r} e n zwlnr

See Figure 36.2.

-r— u{B}——m

Work required
10 move &
single charge
from A 1o B

FIGURE 36.2 Potential due fo a point source in two dimensions.

In terms of electrostatics, the potential difference u(B) — u(A) represents the
work needed to move a single positive charge from A to' B (Figure 36.2). A
sink, on the other hand, is represented by a negative source, and so a sink with
magnitude —¢q would give rise to a potential field

u(r) = e In -

This completes the discussion of potential due to point charges; we are now in
position to solve the nonhomogeneous equation by means of Green’s function.

Poisson’s Equafion inside a Circle

We will now solve the important problem

1 1
PDE u, -+ a2 + oy = Hr8) 0<r<l
BC u(l1,6) = 0 0=6=<27

(36.2)

The Green function technique (impulse-response method) consists of two steps:
1. Finding the potential G(r,6,p,¢) at (r,8), which we force to be zero on
the boundary and which is due to a single charge (magnitude 1) at {p.d}
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2. Summing the individual responses G(r,8,p,¢) weighted by the right-hand
side (charge density) f(r,8) over all {p,®) in the circle to get the solfution

u(r,8) = L L G(r.9, 9,43) flp,d) p dp dd

We now find the impulse response G(r,8,p,¢) for our problem.

Finding the Potential Response G{r,0,p,)

We first replace the right-hand side f(r,8) by a point source of magnitude +1
at an arbitrary point {p,b). Mathematically, we call a point source an impulse
function (or delta function) and represent it by 3(r — p,B — ¢). We interpret
this delta function as a function of » and 8 that is zero for all points except at
(p.&), where the unit charge is located. In terms of forces, we could interpret
the delta function as a point force of magnitude +1 at {p,$). The idea now is
{o find the potential response (which we force to be zero on the boundary) due
to a single point charge. This function is called the impuise response function
(or Greem’s function), and it is the response at (r,8) to a single source at {(p,b).
The difficulty in finding this function is due to the fact that it must vanish on
the boundary. If we didn’t require zero, then the problem would be casy, since
we already know that

is the potential due to a charge at (p.¢) [where is the distance from the charge

{p.d)l.

Physically, finding G(7,9,p,0) corresponds to one of the following:

1. Finding the equilibrium temperature inside the circle with a heat source
at (p,®} and the boundary temperature fixed at zero.

2. Finding the height of a stretched membrane fixed at zero on the boundary
but pulled up to a great height at (0,d}.

3. Finding the electrostatic potential inside the circte due to a single positive
charge at (p,d) with the boundary potential grounded to zero.

We will now find Green’s function; it will look something like Figure 36.3.

Unit circle

FIGURE 36.3 Green’s function G(r.8.p,¢) due tc a source cf (p.d),
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Sieps for Finding The Solution

STEP 1 Since the function

is the potential at P = (r.8) due to a single unit charge at Q = (p.$) (where
R is the distance from P to Q), the only thing left to do is modify the function
so that it is zero on the boundary.

STEP 2 Physicists know from experiments that the potential field due to positive
and negative charges placed a given distance apart give rise to circles of constant
potential (Figure 36.4).

Electron (Negative charge)

a8

Uo sitive charge

Circles of constant negative potential

Zero poiential

Circies of constant
positive potential

FIGURE 36.4 Potential field due io two oppositely charged particles.

So the strategy in finding Green’s function is to place another charge (negative)
outside the circle at such a point that the potential due to both is consiant on
the circle r = 1. We can then subtract this constant value to obtain a zero
potential on the boundary. It is obvious now that this potential will satisfy our
desired properties for G(r,8,p,&). The big question is, of course, where do we
place the negative charge outside the circle, so that the potential on the boundary
1s constant? Without going into the details, we can show rather easily that if the

négative charge is placed at @ = (5,0} = (1/p,d), then the potential

1 1 —
u(r,0) = 5o 1n R ~ = in /R
T

2 2
due to the two charges will be constant on the circle » = 1. The variables R and
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R are the distances from the two charges to (r,8). In fact, the constant potential
on the circle r = 1 can easilv be shown to be ‘

-1
—lInp {A positive constant)
2m

See Figure 36.5

R .
- (Hp, =0

{Megative charge at O}

{Origin} {Positive charge at Q)

Constant potential on the circle r = 1

FIGURE 365 Charges ot @ and @ giving rise to constant pofential at
r=1 '

With these steps in mind, we construct Green’s function

| 1 1 = 1
36.3 G{r,8,p,6) = —In /R - —In /R + —
(36.3) {r,0,p,0) o I 1 g i1 IR 2W.1n p
Potential due to Potential due to Subtracting the
positive charge negative charge constant potential
at @ on the boundary

at O

where

R =/ =72rpcos (0 — &) + p

R = \/rz WEfECOS (6 — ¢) + 1/p°

{These two formulas are just trigonometric formulas for the distance between
two points in polar coordinates.) To find the solution to our original problem,
we merely superimpose the impulse functions; this brings us to the final step.

STEP 3 Superposition of the impulse responses. This step is easy; we just write

u(r,9) = LL G(r,0,p,0)f(p, &)p dp dd
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or

1 . ‘
o) | W) = o | | m GRRp.0 dode |
J

This is Green’s function solution of Poisson’s equation inside a circle. If we were
given the charge density {(r,6), we could evaluate this integral numerically.

NOTES

1. It is also possible to solve

PDE Vi =0 0<r<i
BC u(1,8) = g(8) 0=8=<l7

by means of the Green's function approach. In this case, the solution 1s

TG
g;(r,ﬁ,l,d))g(d)) dd

4]

uir,8) = J

which, if we compute 8G/dr (a rather tedious computation), gives

i 1O BT St s
(36.5)  ulr,®) = Im J[} [1 — 2r cos (8 rw ¢) + rz}g(d)) ae

which is the Poisson integral formula we found in Lesson 33.

The solution to the general Dirichlet problem

2

PDE V= fr0) 0<r<1
BC  u(l,6) = g(8) 0<6=2m

woulid be the sum of equations (36.4) and (36.5). _

3. We can solve many problems in different domains by means of the Green
. function approach. However, we must find & new Green function for each
domain and each new equation and finding Green’s function is not always
easy. :

4. To actually evaluate solution (36.4) for most sources f(r,8), we must resort %
to numerical integration on a computer.

F
1
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PROBLEMS

Find the potential due to a point source in three dimensions.

Find Green’s function G{x,y, & ) for Laplace’s eguation in the upper-half
plane y > 0. In other words, find the potential in the upper-half plane at
the point {x,y} (zero on the boundary y = 0) due to a point charge at (&,1}.
See the following figure.

7
R*\/_(x—€$2+(y—n)2 y Q= (£ 7]

% O = (£, -n)

HINT  If we place a negative charge at Q = (£, —), then it’s clear that the
potential field on the line y = { due to the two charges at O and (J is zero.
Hence, Green’s function would be the resultant field due to these two charges.

3.

4.

Using the results of problem 2, what 1s the solution to Poisson’s equation
Vi = —fk in the upper-half piane with zero BC?

How would you go about constructing Green’s function for the first quadrant
x>0,y > 07

An alternative approach to solving Poisson’s equation that works sometimes
is the following; suppose you want to solve:

FPDE Vig = 1 O0<r<1

S

BC u(1,8) = sin 0 0=<86=2n
Start by trying to find any particular solution of V?u = 1 by substituting
u(r,8) = Ar

into the differential equation and solving for the constant.

After finding a particular solution u,(,8), consider letting u = w + 1,
and ask the question, what boundary-value problem will w(r,8) satisfy?
After you determine this, solve for w(r,8). Finaily, what is the answer u{r,9)
of the original probiem? Does it check? Look at the answer carefully; what
is the interpretation of each term?
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