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1

Green’s Functions
(Intuitive Ideas)

1, INTRODUCTION AND GENERAL COMMENTS

For the limited purposes of this section we shall look mainly at steady heat
flow in a homogeneous medium. Consider first the one-dimensional prob-
lem of a thin rod occupying the interval (0,1) on the x axis. Setting the
product of the thermal conductivity and cross-sectional area equal to 1, we
find that (1.17), Chapter 0, becomes

du
(LD wwmf(x), O<x<t; u(@y=a, u(l)=p,

where f(x) is the prescribed source density (per unit length of the rod) of
heat and o, 8 are the prescribed end temperatures. The three quantities
{f(x);a, B} are known collectively as the data for the problem. The data
consists of the boundary data o, 8 and of the forcing function f{x}.

We shall be concerned not only with solving (1.1} for specific data but
also with finding a suitable form for the solution that will exhibit its
dependence on the data. Thus as we change the data our expression for the
solution should remain useful. The feature of (1.1) that enables us to
achieve this goal is its linearity, as reflected in the superposition principle: 1f
u(x) is a solution for the data {fi(x);a.,8,} and u,(x) for the data
{fx): 5, 8,), then Auy(x)+ Buy(x) is a solution for the data {Af,(x)+
Bfy(x); Ao, + Bay, A, + Bf3,}. One can extend this principle in an obvious
manner to n solutions corresponding to n sets of data. Under mild
restrictions it is even possible to extend the superposition principle to
infinite sets of data (see Exercise 1.4 for the case of superposition over a
continuously varying parameter). In practice, the superposition principle
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INTRODUCTION AND GENERAL COMMENTS 43

permits us to decompose complicated data into possibly simpler parts, to
solve each of the simpler boundary value problems, and then to reassemble
these solutions to find the solution of the original problem. One decom-
position of the data which is often used is

{f(x);0,8)={F(x);0,0} +{0;0, B}.

The problem with data {f(x);0,0} is an inhomogeneous equation with
homogeneous boundary conditions; the problem with data {0;a,8} is a
homogeneous equation with inhomogeneous boundary conditions. It should
be noted that data {0;a, 8} is itself often split up into {0;«,0} and
{0;0,8}, each of which involves one inhomogeneous and one homoge-
neous boundary condition.

Later in this section [equation (1.12)] and again in Section 2 [equations
(2.9) and (2.10)] we show how the superposition principle or other methods
lead to the following form for the solution of (1.1):

(12) u(x)= [ 'g(x,£) f(E)dE+(1— x)a+ xP,

where Green’s function g{x,£) 1s a function of the real variables x and §
defined on the square 0<x,£< 1 and is explicitly given by

x(1-§), 0<x<4,

1.3 ) 1- =
(1) ()= x (1= x5)= | X170 9 <t
Here x . stands for the lesser of the two quantities x and £, and x-, for the
greater of x and £ Since g does not depend on the data, it 1s clear that (1.2)
expresses in a very simple manner the dependence of u on the data
{f:a,B}. Symbolically we can write (1.2) as

u(x)=F(f,a,B),

where F is a linear operator transforming the data into the solution.

For specific f the integration in (1.2} can sometimes be performed in
closed terms, using elementary integration technigues. One must, however,
divide the interval of integration into two parts to take advantage of the
simple formulas for g. Since the integration in (1.2} is over £ we write
fé=f&+ !, where in the interval from 0 to x we have {<x, so that we
must use the second line of (1.3), whereas in the interval from x to 1 the
first line of (1.3) applies. The integral term in (1.2) therefore becomes

(=) ["ef@de+x [ (1-8) f@ e
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Turning to the three-dimensional problem of heat conduction in a
homogeneous medium of unit thermal conductivity, occupying the domain
Q with boundary T', we know, from (1.11}, Chapter 0, that the steady
temperature u{x) satisfies

(14) —Au=f(x), xeQ; u=h{x), x€&T.

Here x={x,,x;.x;) i8 a position vector in three-dimensional space. The
source density per umit volume f(x) is given for x&f}, whereas the
boundary temperature A(x) is given for x on the surface T

Note that we are no longer using any distinguishing notation for vectors.
The context should make it clear whether a quantity is a vector or a scalar.
The differential operator A appearing in (1.4) is the Laplacian, which, in
Cartesian coordinates, takes the form 32/3x}+3%/0x3+ 3 2/8x3, whereas in
other coordinate systems it will look quite different. One of the advantages
of the notation of (1.4) is that it does not commit us to a particular
coordinate system.

In any event the solution of (1.4) can be written in terms of Green’s
funetion g(x,£) (which is now a function of the six real variables
Xp X2 X3 61,60 650 '

(15) u()= [enD©d- [ £ ne)ds,

where d¢ is an element of volume integration (=d§ d§,d¢, if Cartesian
coordinates are used), 4S5, is an element of surface integration at the point
t(on T, and 0/0n denotes differentiation with respect to £ in the outward
normal direction on T

Thus (1.5) expresses the solution of (14) in terms of the data
{ f(x); h(x)} with f the forcing function and 4 the boundary data; again we
see that the superposition principle holds. It remains only to confess that
the function g(x,£) appearing in (1.5) is. usually not known explicitly
(unless the domain £ is of a very simple type such as a ball or parallele-
piped); nevertheless one can obtain a great deal of useful information
about g(x,£). First we point out that g(x,£) has a very simple physical
interpretation as the temperature at x when the only source is a con-
centrated unit source located at £, the boundary being kept at 0 tempera-
ture. One can also characterize g(x,£) mathematically as the solution of a
well-defined boundary value problem; this formulation requires a little
delicacy, however, and we shall take up the question in some of the
succeeding sections.

The reader may have noticed that in (1.1) the differential equation was
formulated on the open interval 0 <x < 1 rather than on the closed interval
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INTRODUCTION AND GENERAL COMMENTS 45

0<x <1; similarly in (1.4) the differential equation held on a domain Q,
which, by definition, is an open, connected set (see Section 1, Chapter 0).
Why do we insist that { be an open set? The reason is to avoid discussing
the differential equation on the boundary. Take (1.1), for instance; if we
required the differential equation to hold at x=1, we either would have to
extend the function u for x> 1 (to be able to form the difference quotient
at x=1), or would have to use the concept of a one-sided derivative at
x=1. For a higher dimensional problem such as (1.4), it is even more
awkward to try to use the differential equation on the boundary since this
would necessarily require some smoothness for the boundary T and the
boundary data A(x).

We shall therefore always formulate the differential equation on a domain
{2 (open, connected ser).

How do we relate the boundary values of u(x) to its interior values? The
boundary values of u are given, whereas the interior values are obtained by
solving a differential equation with its attendant indeterminacy. To see
that some clarification is needed, consider (1.1) when f(x)=0, 0<x<]1,
and a= f=0. We clearly would like the solution u(x) to be identically 0;
we want to rule out ridiculous candidates such as

=] 1 0<x<l,
o(x) {0, x=0,x=1,

This function v(x) satisfies the differential equation —d*%/dx*=0, 0<x<
1, and clearly v(0)=(1)=0; yet v(x) is a spurious solution. We can reject
v Oy requiring that the solution w{x) of (1.1) be continuous in the closed
interval 0<x<1, or, equivalently, by requiring that lim, 4, u(x)=«,
lim,_,_u(x)=§5.

Similarly in (1.4) we shall require that the solution u(x) be continuous in
the closed region Q=80+T. [It is of course understood that the given
boundary data A(x) constitutes a continuous function of position on I']

So far we have said nothing about how to decide whether or not a
function u(x) satisfies the differential equation —u” = f{x) in {(1.1). At first
glance there seems to be little to say: one merely makes sure that u(x) is
twice differentiable in 0 <x <1 (which implies that u is continuous and has
a continuous first derivative) and that the function — u”(x) coincides with
the given function f(x) over the whole interval 0<x <1 [in other words,
for each x in 0<x <1, the numbers —u"(x) and f(x) should be the same].
This works splendidly if f(x) is continuous, but there are good reasons,
both mathematical and physical, for considering forcing functions f(x)
that are only piecewise continuous. For instance, one can easily envisage a
situation in which the prescribed source density f(x) is a nonzero constant,
say 1, in 0<x<{ and is 0 in £<x <(1. Note that f(x) is discontinuous at
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the point x=§£ One often hears the argument that such functions are
inadmissibie on physical grounds, that the “real” source density is continu-
ous and merely decreases quickly from the value 1 to O in a small
neighborhood of the point x=£ Such philosophical arguments are im-
material; all we care about is that the temperature calculated on the basis
of the discontinuous source density should be nearly the same (in some
suitable sense) as that calculated on the basis of the continuous density
{see Exercises 2.2 and 2.6, for instance).

We shall return to this question in due time, but now let us try to
incorporate piecewise continuous forcing functions into our framework at
the cost of slightly reinterpreting the meaning of the differential equation
—u"=f We still want ¥’ to be an integral of f, and of course integrals of
piecewise continuous functions are well defined and are necessarily con-
tinuous; the continuity of ' implies that u is continuous. The new feature
is that ¥” no longer exists at the points where f has jumps. Let x, be such a
point, and let us try to calculate #”(x,) by forming the difference quotient
for u”:

N O

W (xg+Ax)—w'(xg)
Ax - Ax ’

whose approximate value is — f(x,+) for Ax >0 and — f(x,—) for Ax <0.
Thus u”(x,) cannot exist, no matter how we try to adjust the value of f at
X, as long as f(xg+) and f(x,—) are different. Of course at points where
F(x) is continuous we still require that #”(x) exist and satisfy —u"{x)=
f(x). We can easily generalize these ideas to an arbitrary linear differential
equation of order p:

(1.6)  a,(x)u®(x)+a,_(x)u® " D(x)+ - +a,(x)1'(x)+ay(x)u(x)
= f{x), a<x<b.

Definition. Let f(x) be piecewise continuous, and let gy(x),...,q,(x) be
continbous. A classical solution of (1.6) is a function u(x) belonging to
C?~Ya,b)—the class of functions with continuous derivatives of order
p—1 on a<x<b-such that, at all points of continuity of f, u'PY x) exists
and satisfies the differential equation (1.6).

Remark. By using the notion of weak solution (see Section 5, Chapter 2),
we can give a reasonable interpretation of (1.6) even when f is only
integrable. This idea applies also to partial differential equations, where
difficulties can arise even if f is continuous.
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Let us now solve (1.1) for the very simple piecewise continuous, forcing
function

- =40 0<x<a,
(17) flxa)=Hix~a) {1, a<x<l,
where H(x) is the usual Heaviside function, which vanishes for x <0 and
is equal to 1 for x>0 (its value at x =0 plays no role in the analysis). In
(1.7) x is the primary variable and « is a parameter. We first solve (1.1)
when a=f=0, that is, for data {H(x—4);0,0}. The solution will be
denoted by wu(x,q2), since it depends not only on x but also on the
parameter a. In 0<<x <a we have — d*u/dx*=0, whereas in a<x <1 we
have — d%u/dx*= 1. Integration and use of the boundary conditions gives

2
u=Ax in{0,e) and u=—(x—2Q—+B(i—x) in (a,1),

where 4 and B may depend on a but not on x. For u to be a classical
~solution we must require that u and 1’ be continuous at x = a (we already
have more than enough smoothness in the subintervals 0<x <a and
a<x<1). This gives 4 =(1 —a)*/2 and B=(1-a?)/2, so that

RTY
(azl) ..

2 a2
w(le) + l 2a (1-x), a<x<l,

0<x <a,
(18)  u(xa)=

which is plotted in Figure 1.1. Exercises 1.4 and 1.5 show how to use (1.8)
to obtain the solution of (1.1) for arbitrary f (with a= 8=0).

It is of interest to present another approach to (1.1) with data
{ f{x); 0,0}, which lends itself to graphical analysis. This method is based
on interpreting the problem as the transverse deflection of a taut string
with fixed ends. The static version of (4.36), Chapter 0, with T®=1, /=1,
X=x, f-j=f(x), and u instead of v for the transverse deflection, gives us
(1.1) with a=f=0. It then follows that the vertical component of the
tension at a point {x,u(x)) along the string is just #'(x); thus the reactions
at the ends x=0 and x=1 are —«/(0) and u (1), respectively. By taking
moments about the ends of the string, we find that

(1.9) u’(1)+j:xf(x)dxﬁ0, _u'(0}+f:(1—x)f(x)dx=o,
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From (1.8}, we find #' {0}, 4" (1),

(1 -a?

P B

B X

Area + = arga —

T/

!

!

|

i

f
x=0 x=a 't x=1
l.ocation of maximum deflection

Figure 1.1

which could also be derived without recourse to the physical interpretation
by multiplying the differential equation in (1.1) by x and 1-—x, respec-
tively, and then integrating from 0 to 1. In any event we have calculated
the reactions at the ends and can now find #'(x) at any point from

(1.10) W (x)=u(0) [ 1),

which can of course be done graphically. Since w(0)=0, we can find w(x)
from (1.10) by integrating from O to x. This again is easy to do graphically;
analytically we find that

(111) u(x)= [ " () dq=u'(0)x — f "y f "1t
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The iterated integral can be viewed as a double integral over a triangular
region in the £-n plane; on changing the order of integration, we obtain

w(x)=u'(0)x — fo (x—-8) /() ds
(112) =x [l (1-07®at~ [ (-0 @) dt
- fo 'g(x,8) f(8)dt,

where g(x,£) is just Green’s function as predicted in (1.3). It is then an easy
matter to show that (1.2) holds when the data is {f;a,B)} instead of
{£:0,0}. In Figure 1.1 we have illustrated the graphical integration when
the data is { H(x—a); 0,0}, the corresponding formula for the deflection
being {1.8).

Exercises

1.1. Consider the transverse deflection w(x) of a string satisfying
—u"=f(x), O0<x<]; u(0)=0, u(l)=0,
» 0<x<y,

P

X —
where flx)= .
R s<x<L

Pl

(a) Find " at one of the ends, and then carry out graphically two
successive integrations to obtain the deflection u(x).

(b) Find wu(x) using (1.2) and (1.3). To perform the integration
explicitly you must divide the interval into (0,.x) and (x, 1); in the
first subinterval, x is larger than £ so that the second line of (1.3)
applies. You will then need a further subdivision to handle our
specific forcing function. Compare your result with that for part

(a).

1.2. The small transverse deflection u(x) of a homogeneous beam of unit
length subject to a distributed transverse loading f(x) satisfies

4
(1.13) i%-—“f(x), 0<x<l,
dx

where we have set E/=1 in (4.11), Chapter 0. For a beam simply
supported at its ends the boundary conditions are

(1.14) w0 =u"(0)=u{l)=u"(1)=0.
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The shear force V and moment M at a cross section satisfy
V= —u"(x), M=u"(x),

where the choice of signs is in accord with the convention used in
Section 4, Chapter 0. For (1.13) subject to (1.14), show how to
calculate »'(0). It is therefore straightforward to find V(x) and M(x)
by graphical integration. Once M{x) is known, it is easy to calculate
#'(0) and hence to proceed in determining u'(x) and u(x) graphically.

Consider the boundary value problem
d du
(115) - a{k(x)a]—f(x), 0<x<l;  u(0)=u(1)=0.

where k(x)>0 in 0<x <1, Let K{(x) be a solution of the homoge-
neous equation satisfying the boundary condition at x = 1. Show how
one can calculate »’(0) by multiplying both sides of the differential
equation in (1.15) by K(x) and integrating from x=0 to x=1.

For each 8, 8, <8 <#,, denote by u(x,8) the solution of the problem
d’u
_E=f(x=8)? 0<x <y u!xwt):a(g)! u[x_lﬂB(H).
Show that the function
o
U(x)=f "u(x,8)d0
&
satisfies
2
Md_g“=F(‘x)’ 0<JC<1, U1x=GmA’ Uix=l£B’
dx :
where _
@ @ @
F(x)=f f(x,0)d8, A -—.f *a(8) do, B=f *R(6)d8.
a4, 8, 4
If f has a continuous derivative on — oo <x < 00, We can write

f(x)'—“f(xo)"‘*“j;xf'(i)d&, — o0 <x < %.

—
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For x > x, show that we can use the equivalent formula
(L16)  f()=f(xo)Hx—xo)+ [~ H(x=8f(Odt
X9

Use Exercise 1.4 and (1.8) and (1.16} to find the solution of (1.1) with
a= =01 the form (1.2).

2. THE FINITE ROD
Construction of Green’s Function

We return to the heat conduction problem (1.1}, repeated below for
convenience:

(2.1 —%=f(x), 0<x<l; w0 =a, u(l)=4.

We want to solve the problem as compactly as possible for arbitrary data
{fia.B}. The differential operator and the boundary operators appearing
on the left sides of the equality signs in (2.1) are kept fixed: no one is
proposing to solve all differential equations with arbitrary boundary condi-
tions at one stroke!

To solve (2.1) for arbitrary data, we introduce an accessory problem
where, instead of a distributed density of sources, there is only a con-
centrated source of unit strength at x=¢ and where the boundary data
vanishes (which means in our case that the temperature is 0 at both ends).
Physically this accessory problem makes sense, and the resulting steady
temperature should be well defined; moreover, it is clear that the tempera-
ture cannot vanish identically, since there is a steady nonzero heat input
from the source. This temperature (solution of the accessory problem) is
known as Green's function and is denoted by g{x, £). Here £ is the position
of the source, and x is the observation point. We usually regard £ as a
parameter and x as the running variable; but when we are all through we
have a function of two real variables, and we are at liberty to forget the
original significance of x and £ In any event all differentiations below are
with respect to the first variable in g. Let us see whether we can construct g
on the basis of the information available so far. Since there are no sources
in0<x<¢andin £<x<1, we have —g” =0 in both intervals, Taking into
account the fact that g vanishes at x=0 and x==1, we find that

(2.2) g=Ax, 0<x<§  g=B(l—-x), &<x<l
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Here A4 and B are “constants,” that is, independent of x; they may,
however, depend on the parameter ¢ If at this stage we demanded the
continuity of g and g’ at x=§, we would find 4 = B=0, so that g would
vanish identically—which is nonsense! We must abandon at x=§ the
requirement that g’ be continuous, although we shall still insist on the
continuity of g. The jump of g’ at x=§ is easily calculated if we recall
the primary integral formulation of the problem of heat conduction in
terms of energy balance [see (1.1), and (1.10), Chapter 0]. Consider a thin
slice of the rod from £—¢ to £+¢. The one-dimensional character of the
problem means that no heat flows through the lateral surface; since the
product of the cross-sectional area and the thermal conductivity is 1 and
the amount of heat generated in the slice is I, we have

—g,ix=£+e+g’ix=f—ez i’
which, as £ tends to 0, leads to the jump condition for g’
(23) R R §

Condition (2.3) and the continuity of g at x =¢ enable us to calculate 4
and B in (2.2) from the simultaneous equations 4 = B(1 —§)and — B— A =
~1. Thus B=¢ and 4 =1—§, so that

_j(=8x, 0<x<g
(2.4) 8(x’5)"[(1_x)g, g<x<l,

confirming (1.3). In Figure 2.1a we picture Green’s function as a function
of x for fixed £, and in Figure 2.15 as a function of x and £ Thus Figure
2.1a can be viewed as a cross section of the surface in Figure 2.15.

£ glx, &
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We have therefore characterized Green’s Function g(x,£) both physically
and mathematically. Before proceeding to another characterization, based
on the delta function, let us recapitulate what has been done so far.

1. Physical description. We chose to describe g in terms of heat conduc-
tion in a rod: g(x,£) is the temperature at x when the only source is a unit
concentrated source at £, the ends being at 0 temperature. It is also
possible to interpret g as the transverse deflection of a string: g(x,£) is the
deflection at x when the only load is a unit concentrated force at £, the
ends being kept fixed on the x axis at x=0 and x=1.

2. Classical mathematical formulation. Green’s function g(x, §)
associated with (2.1) satisfies

2
—d—fmn, 0<x<§ E<x<];
dx
(25)  {g(0.H)=g(1,85)=0;
, e g _ -
g continuous at x=§; I leces  dx bemen = i.

In our third formulation we would like to consider (2.5) as a boundary
value problem of the form (2.1) witk :pecific data. The boundary data for
g clearly vanishes, but what is the forcing function? In (2.1) the foreing
function is a source density (per unit length) rather than the concentrated
source of the Green’s function problem. How can we describe a con-
centrated source at the point £ as a density? This is easy to do symbolically
but is not so easy within a consistent mathematical framework. Suppose we
let 8(x) be the density corresponding to a concentrated source at x=0. We
would then need

fbﬁ(x) dx= { | (a,b). contains the origin,
a 0 otherwise.

Unfortunately, no integrable function satisfies these properties. Neverthe-
less we shall use 8(x) symbolically to represent the source density corre-
sponding to a unit source at the origin. This symbolic function is known as
the Dirac delta function; 8(x - §) is 8(x) translated £ units to the right and
so must be the source density for a unit source at x =§.

Perhaps the most natural way to view 8(x) is as the limit of a sequence
of narrow, uniform densities of large magnitude (with total strength unity)
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such as

n, |xi<5‘;,

0, [x[>5];.

Thus we may think of 8(x) as the limit as n—oo of f,(x), and §(x — ) as the
limit of f(x~£). The sifting property

b o) Ha<é<h,
2.6 8(x = dx =
26) f (= Eelx)dx {0 it £<a or £>b,
where ¢(x) is an arbitrary function continuous at x=§£, then follows by
replacing 8(x —£) by f,(x —£) and proceeding (o the limit as n—o0.

3. Delra function formuiation. Green's function g(x,£) associated with
(2.1} satisfies

2

2.7) ~%ma(x-g), D<x<l, 0<g<l; g(0,8)=g(1,8)=0.
X

At this stage (2.7) is nothing but shorthand for (2.5), but we will develop in
Chapter 2 a mathematical framework in which (2.7) will have impeccable
standing in its own right.

Solution of the Inhomogeneous Equation

The simple physical interpretation for Green’s function guides us in
constructing the solution of problem (2.1) with data { f;0,0}:

(2.8) —u"=f(x), 0<x<l; u(0)=u(1)=0.

The idea is to decompose the distributed source f(x) into a2 number of
small concentrated sources located at various points along the rod and
then add their individual contributions to the temperature to find u. Divide
the interval (0,1) into n equal parts, calling the center of the kth subinter-
val §. The length of each subinterval is Af=1/n. It is reasonable to
suppose that the temperature corresponding to the distributed density f(x)
15 closely approximated by the temperature corresponding to small con-
centrated sources f(§ )AL, ..., f(§,) AL located at §,,...,&, respectively (see
Figure 2.2); that is, the temperature for the data {f(x);0,0} is close to the
temperature for the data {Z7_,8(x—£)f(£)AL:0,0). According to the
principle of superposition extended to concentrated sources, the tempera-

‘t Fon
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ture at x for all the small concentrated sources is
3 st e

which, as n-sco, tends to

(29) u(x)= [ s D) ds

Thus our intuitive (or heuwristic) argument leads us to believe that (2.9)
provides a solution to (2.8). Observe that this construction will not work
directly for (2.1} with nonzero boundary data, but the solution is easy to
determine. Since af{l — x)+ Bx satisfies (2.1) with data {0;«, 8}, the super-
position principle shows that

(2.10) u(x)= [ '(x,8) f(§) dE+ a1 — x) + fix

satisfies (2.1) with data { f;a, B}

We must now verify that (2.10) acrually solves (2.1); we would also like to
show that it is the only solution to the problem and, finally, that u(x) depends
continuously on the data.

The rigorous proof below is based, as it must be at this time, on the
classical definition (2.5) of g. There will be occasions, however, when we
will be satisfied to give merely plausible arguments using the symbolic
formulation (2.7), together with the sifting property (2.6) of the delta
function.

Verification of Solution

We confine ourselves here to the case where f is continuous, leaving the
more general case to Exercise 2.7. Consider first the problem with vanish-
ing boundary data. Clearly (2.9) vanishes at x=0 and 1 because g(0,§)=
£2(1,6=0, so that we only have to show that —u”=f at each point x,

flE) ok
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O0<x< 1. In view of the discontinuity of g’ (=dg/dx) at x=§, a certain
amount of care is required in differentiating expression (2.9). Let us split
the interval of integration into the parts (0,x) and (x, 1), within each of
which g and its derivatives are continuous. Then

=g [anps@ae+ [z,

and we now appeal to the classical formula for differentiation under the
integral sign

d [ox _ [b(x) Ok db da
(2.11) 5[{}@ n(x§)di= [ S dE+h(xb(x)) .~ h(xa(x) 7

a(x)
to obtain

& [Texas@de+ [ g s

+glx,x =) f(x—)—glx,x+)f(x+).

Here the notation x—,x+ serves to distinguish between left- and right-
hand values at a possible point of discontinuity of a function. Since g(x,£)
and f({) are continuous, the distinction is unnecessary in the expression for
du/dx, in which the last two terms cancel. A further differentiation leads
to

d2H x 1
5= [ @ [ 2@ de+ g (xx ) f(x-) =g rx ) (x+).

The jump property (2.3) of g’ can be rewritten as g'(x,x—)—g'(x, x+)=
— 1, and since g” =0 in the intervals £ <<x and &> x, it follows that —u" = f
and so (2.9) is a solution of (2.8). Since (] — x)- 8x satisfies (2.1) with
data {0;a, 8}, we conclude that (2.10) is a solution of (2.1) as required.

Uniqueness

Suppose #;(x) and u,(x) satisfy (2.1) for the same data { f(x);a,8}. Then
w(x) = uy(x)— u,(x) satisfies (2.1) with data {0;0,0}. By definition of the
concept of a classical solution, ] and u} must be continuous and u; and
uj exist except at points of discontinuity of f. It follows that w and w" are
continuous on 0<x<1 and that w”=0 except possibly at points of
discontinuity of f. In each subinterval where [ is continuous, w' must be
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constant; since w' is continuous, the constant is the same in each subinter-
val and therefore w= Cx+ D in 0<x < 1. Applying the boundary condi-
tions w((=w(1)=0, we find that w=01in 0<x < L.

It is perhaps worth noting that a similar argument shows also that
Green's function satisfying (2.5) is unique.

Continuity with Respect to the Data

In most experimental situations the data {f(x);a,8) is not known
precisely. It would be comforting to know that the solution of the
boundary value problem is not hypersensitive to small changes in the data.
We feel that many physical problems should exhibit this kind of stability.
We would like to show that a “small” change in the data leads only to a
“small” change in the solution. To make this precise we must introduce a
notion of “separation” or “distance™ between functions (for real numbers
there is no problem: the distance between a and b is |b — a). Here we shall
define two different numerical measures of the “distance” between func-
tions (this notion was introduced in Section 6, Chapter 0, and will be
treated in greater generality in Chapter 4):

212) dofof)= s (110~
and
(213) a\(f)= [ 1) ~Fi 0l ax.

Thus d_, is the largest deviation in ordinates between f, and f,, whereas 4,
is the area between the curves f, and f,. Although f, and f, are functions, d,
and 4, are nonnegative real numbers. In Figure 6.2, Chapter 0, both
d\{f.f2) and & (f.f,) are small, whereas in Figure 6.3 d,(f,,f,) is small, but
not d,(f.f;). Now let f, and f, be two continuous Functions satisfying
d(f1.f2)<e. and let u, and wu, be the corresponding solutions of (2.8).

Then

()= w0 =| [ 8 DL AO 148 < [ |a(x. 21 ~Fla
<o) [ 180x.8) d.

Since supy., ¢« 1| &]= 1, it follows that

do(ugi)= s0p [uy(x)~u(x)| < fd(fif) < 5 -

gxsl
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so that the solution of (2.8) depends continuously on the data. Similar
calculations show that there is continuous dependence on the data if 4, is
used as a measure of the distance between functions. For (2.1) with
nonzero a and # the situation is similar: if d,,(f;.f3) <e, |a;— a,} <e, and
| By — B2l <e, then :

doo(ty, 1) < 3 frofo) +]oy — o +| B — Byl < 76

and again there is continuous dependence on the data.

When dealing later with more general boundary value problems (or
other equations such as integral equations), we shall still be faced thh
these three questions:

1. Is there at least one solution (existence)?
2. Is there at most one solution (uniqueness)?
3. Does the solution depend continuously on the data?

If the answer to this trio of questions is affirmative, the problem is said to-

be well posed (otherwise, ill posed). Until recently it was sound dogma to
require that every “real” physical problem be well posed. However, it is
now understood that ill-posed problems occur frequently in practice but
that their physical interpretation and mathematical solution are somewhat
more delicate. ‘

Alternative Derivations for the Problem with Nonzero Boundary Dita

There is no difficulty in visualizing the role of Green’s function i solving
the problem with data {f(x);0,0}. We proceed from (2.8) to (2.9) by

straightforward, albeit intuitive, arguments. The extra terms in (2.10) -

corresponding to nonzero boundary data were obtained by a different
procedure. Could we have used Green’s function for this purposeras well?
One way of doing this is by translating the problem with data {0;a, 8) into
a problem with nonzero f and vanishing boundary data. Consxder the
boundary value problem i

(2.14) —u'=0, 0<x<l;  w(®)=a, u(l)=p,

and let A(x) be any function (not necessarily satisfying any related differen-
tial equation) such that A(0)=a, #(1)= . Setting

u=h+o,
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we see that o satisfies
—p"=h", 0<x<]; v(0)=o(1) =0,

whose solution by (2.9) is
o(x)= [ s(x R @ ds= [ g6 0" @) s
0 o

where we have used the symmetry of g, that is, g(x,§)= g{({,x). Splitting the
interval of integration into (0,x) and (x,1), we obtain, after two integra-
tions by parts,

o(x)=— g (£, )REIEZ5 " ~ g ExXIDEIL,,
or, using the jump condition on dg/dx given in (2.5),
vo{x)= —h(x)-g'(Lx})B+g'(0.x)a

Since u= h+ v, we find that
{2.15) u(x) = ag'(0,x)~ Bg'(1,x) = a(l~x)+ Bx,
in accord with (2.10). Observe that A(x) has disappeared from the final
expression (2.15) for u.

Another way of arriving at (2.15) is to combine the differential equation
of (2.14) with that for Green’s function in the subintervals (0,£) and &b

Since g” =0 in each subinterval, we have ug” — gu”=01n (0,{) and in &),
so that

£ " o 1 " ”
f(ug —gu )dx+f (ug” —gu")dx=0.
0 &
The relation
(2.16) ug" —gu” =(ug’ —gu'y,

which is valid classically in each of the subintervals (0,£) and (4, 1), and the
jump condition on g’ then yield

2.17) u(§)=u(0)g'(0,£) —u(1)g'(1.),

which is the same as (2.15).
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Both methods used so far are rigorously based on (2.5). An alternative to
the second of these methods is based formally on the symbolic characteri-
zation (2.7) and on the sifting property (2.6). Multiply (2. 14y by g and (2.7)
by u, subtract, and integrate from 0 to 1 to obtain

u(g)= - fo (ug” — gu")dx.

We now use (2.16) over the whole interval from 0 to 1; we are entitled to
do this because we have accounted for the jump in g’ by including the term
8(x—§ in (2.7). Thus u(§)=u(0)g'(0,&) — u(1)g’(1,9) as in (2.17). -

There 1s a lesson worth remembering here. In the classical approach we

use only the subintervals in which all functions are well behaved, the term
u(§) in (2.17) arising from the jump in g’ at x=¢. In the symbolic approach

we deal with the whole interval at once, the term u(f) in (2.17) now arising’

from the fact that there is a delta function on the right side of the
differential equation. Do not mix the two approaches! -
Eigenfunction Expansion

An apparently different approach to (2.1} is by way of the associated
eigenproblem

(2.18) —u"=Ay, 0<x<]; #(0)=u(1)=0,

Here A is a complex number regarded as a parameter. Since we aré dealing

with a homogeneous equation of order 2 with two homogeneous boundary
conditions, we might expect that (2.18) has only the trivial solution u=0,
0<x <1 It turns out that this is true for most values of A, but that there
are exceptional values of A, known as eigenvalues, for which the boundaty
value problem (2.18) has nontrivial solutions. These nontrivial solutions
are called eigenfunctions. Observe that an eigenfunction corresponds to a
definite eigenvalue but that to an eigenvalue may be associated miore than
one independent eigenfunction (it is clear of course that any constant

multiple of an eigenfunction is again an eigenfunction corresponding to*

the same eigenvalue; if u; and , are eigenfunctions corresponding to the
same A, then Au, + Bu, is also an eigenfunction corresponding to that A).
For any complex A we can easily solve the differential equation in (2.18);
imposition of the boundary conditions then shows that nontrivial solutions
are posmble only for A\ =n? A\, =47’ ... A =n*n?.... To the eigenvalue
A, =n’r? corresponds essennally one elgenfunctlon u,(x)=sinnwx (what
this means is that every eigenfunction corresponding to A, is necessarily of
the form Au,). We observe that eigenfunctions corresponding to different
eigenvalues are orthogonal, that is,

1
(2.19) f sin marx sinnax dx =0, msEn.
0

i o
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If we now multiply the differential equation in (2.1) by u,{x) and integrate
from 0O to 1, we find that

1 1
~f u”u,,dx*:f Ju,dx,
0 a
or, after two integrations by parts and use of the boundary conditions,

1 :
/\,,j; uu,,dx-%»nw(ﬁcosmr—a)m_[)fundx

or

Lkuundxﬁ}\;’{j:fu,,dx+mr(a—,8cosnw)}.

The number [juu,dx is just one-half the nth Fourier sine coefficient of
u(x), so that we can recover u{x) through

(220) u(x)= —Eg-z[flfu,, dxé—nw(amﬁcosnw)}sinnwx.
n=1 R Q

In particular, for problem (2.8) having vanishing boundary data, we find
that

(2.21) u(x)= nél nirz U:fu"dx) sinamx,

which can be considered as an alternative representation to (2.9). Compar-
ing the two forms, we deduce the bilinear representation of Green's func-
tion:

& 2sinnwxsinané

222 )= LA ’
(222) glx,8) EE e
which we will study further in Chapters 6 and 7.

We may regard (2.18) as a problem of type (2.8) with forcing function
Au(x); the “solution” is then given by (2.9}, which becomes

(2.23) w(x)=A fo e Ou(®)ds,  O<x<l.

Since u appears under the integral sign as well as outside, we have not
really solved for u(x). Instead we have shown that (2.18) is equivalent to
the integral equation (2.23).

Exercises

2.1, Let fi(x) and f,(x) be piecewise continuous on 0 <x < I, and let u,(x)
and wuy(x) be the corresponding solutions of (2.8). Show that the
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following hold:

(a) If d (f.f,) <e, then d_(u;,uy) <e/8, which is a slight improve-
ment of the result in the text.

(b) If d,(f,.f,) <k, then (1, 1) <e /6.

(©) If d\(f,.f) <, then d_(u,,u,) <e¢ /4.

The last result shows that, if J1 is piecewise continuous and f, is a
reasonable continuous approximation to Jy (such as in the solid and
dashed curves of Figure 4.2), the temperatures corresponding to these
source functions are uniformly close over the entire interval. Thus the
statement made in Section | about replacing certain continuous
sources by idealized piecewise continuous ones has been substanti-
ated.

Let 0<a<b <1, and let

g, a<x<bp,
x —
7(x) { 0, otherwise.

Determine the solution u(x) of (1.1) with data {g(x);0,0} by super-

~ position from (1.8). Let g=1/(b—a), and take the limit as b—q.

Show that u(x) tends uniformly to g(x,a) on 0<x <1, Thus it is
reasonable in this case to approximate a unit concentrated source by
a uniformly distributed density (of total strength 1) in a narrow
neighborhood of a.

Let A be an arbitrary complex number. We shall define the principal
value of VA as follows. If VA =0, then A=0; if A==0, then A has a
unique representation A ={Ale”, 0<@# <27, and the principal value of
VX is defined as |A]'/2% /2, where [A|'2is the positive square root of
the positive real number |A]. Throughout this exercise VX will stand
for the principal value just defined (note that as a function of a
complex variable VA has a discontinuity on the positive real axis}.

(a) The general solution of —u”=Ay is u(x}y=A+Bx if A=0;
u(x)=Aexp(iVX x)+ Bexp(—iVX x) (or, alternatively, u(x)=
Csin VA x+ Dcos VX x) if A50. Show that only the real values
A,=n’r? are eigenvalues of (2.18).

{b) Find the eigenvalues and eigenfunctions of

~w=hu, 0<x<li  w(@)=u(1)=0.
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2.4. Find Green’s function g(x, £) satisfving

2.5.

2.6.

4
gm‘% =8{x—§), O<x,f<1;
(2.24) dx

8(0.5)=g"(0.£)=g(1,£}=g"(1,£)=0

by a graphical method (see Exercise 1.2). Note that g is the deflection
of a simply supported beam with a concentrated unit load at x=¢
What is the equivalent classical formulation of (2.24)?

A simply supported beam (0<x</) is subject to the distributed
transverse loading

/
0, ;X*‘E >e,
flx)= ~1<x<—[+
p! 2 2 81
I !
—-p, §~e<x<~5.

Find the reactions at the ends: plot shear and moment diagrams.
Denote the moment in the beam by M(x,e), and calculate
lim, _,M{x,e) in the following cases:

{a) p is fixed.
by p=1i/e
(c) p=1/¢%

Calculate the limiting deflection corresponding to case (c). What is
its physical significance? Formulate the limiting problem as a self-
contained mathematical problem without any limiting process.

Let { f,(x)} be asequencesatisfying the following conditions: f(x)>0
for all x, f,(x)=0 for |x—¢|>1/n, and [{*|/"f (x)dx =1. Let u,(x)
be the deflection of a string of unit length with fixed ends and unit
tension subject to the transverse pressure f (x). Draw a graph of
u,(x) for some large values of n. Show that C,, the constant slope in
0<x<i—1/n, approaches {1—17) as n—cc. Next graph the corre-
sponding u,(x), and prove that

niinc}o u,(x)=g(x,1) uniformly in 0<x < 1,

where g is Green’s function,
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2.7. Suppose f(x) is piecewise continuous on 0 <x < 1. This means that f
is continuous except at a,,....a,, where f has simple jumps of
amounts J,,...,J,, respectively, We can write

k
(2.25) f=[f]+ Z JH(x~a),

F=1

where [f] is continuous on O0<x <! and all the jumps in f are
accounted for in the sum of Heaviside functions.

We have already proved that, if f is continuous, (2.9) satisfies (2.8).
To take care of the piccewise continuous case it is clear [in view of
(2.25)] that it is enough to treat the special situation where the
loading is H(x — a). Show that in this case (2.9) satisfies (2.8) for all
x#a and that the deflection has a continuous derivative at x =a (the
requirements on a classical solution as defined in Section 1 will then
be met).

3. MAXIMUM PRINCIPLE

If f(x)<0 in (2.1), we have steady heat conduction with sinks. The
temperature u(x) satisfies the differential inequality

(3.1 —u" <0, 0<x< L.

Since heat is removed at every point of the rod, it is physically clear that
the maximum temperature must occur on the boundary (which consists of
the two points x=0 and x=1) and nowhere else. From the geometrical
point of view, u, having a positive second derivative, is strictly convex. This
again shows that the maximum is on the boundary. The proof is trivial: if
t had even a relative maximum at the interior point Xy, then w'{x,)=0 and
1" {xp) <0, contradicting (3.1). '
If instead of the strict inequality (3.1) we know only that

(3.2) —u"<0, 0<x<l,

we can still conclude that the maximum of u occurs on the boundary, but
now it is possible for the maximum to be also attained in the interior if u is
identically constant. We have two versions of the maximum principle:

L. Weak version. Let u be continuous on 0 <x <1 and satisfy (3.2). Let
the maximum of # on the boundary be M. Then u(x)<M, 0<x<1.
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2. Strong version. Let u be continuous on 0<x <1 and satisfy (3.2).
Suppose u{x)<M in 0<x <1 and u(x,)=M at an interior point x,; then
wx)=EM m0<x <.

The first version makes no prediction as to whether the maximum can
occur at interior points as well as on the boundary; in the strong version
this is ruled out unless « is identically constant.

Proof of weak version. For £>>0 set v{x)=u(x)+ex?; then v satisfies the
strict inequality —v” <0, O0<<x <1, so that the maximum of v is on the
boundary and

o{x)=u{x)+ex* <M +e.
Thus u(x) <M +¢ for every ¢ >0, and hence u(x) <M.

Proof of strong version. Suppose u(x,) <M, where with no loss of generality
we can take x; >x, We will show that this leads to a contradiction by
constructing a function o satisfying ~¢"<0 in 0<x<x,, v(0)<M,
v(x)) <M, v(xy)= M. Consider the function

zame* 0w |

which is positive for x >x,, is negative for x <x;, and vanishes at x,. Now
choose ¢ so that 0<e<[M —u(x)]/z(x,), which is clearly possible since
M >u(x) and z(x ) >0. Then the function

v(x)=u{x)+ez(x)

satisfies

—v = —u - € —g = — et TR0,
which is the strict inequality (3.1} But o(0) <M, o{x,) <M, and v(xy)= M,
contradicting the fact that » must have its maximum on the boundary of
the interval (0,x;)

Remarks
i. [If instead of (3.2) we had —u” >0, » would be concave and v would

satisfy a minimum principle. The proof is obtained by noting that w= —u
satisfies the maximum principle (in either version).
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2. If u”=0, then both the maximum and minimum principles apply
(the result is trivial in one dimension but not in higher dimensions).

The weak version of these principles is easily extended to higher dimen-
sions. Let © be a bounded domain with boundary T, and let u be
continuous on £ If ~Au <0 in §, then maxu occurs on I'; if —Au >0 in
2, then minu occurs on I'; if Aw=0 in Q, then maxu and minw occur on T,

The strong version of these principles is extended to higher dimensions
in Section 3, Chapter 7. ‘

The weak version by itself leads to the following interesting con-
sequences:

1. The solution of the inhomogeneous problem (1.4) is unique. Proof: If
u; and u, are two solutions, then w=u — u, satisfies —Aw=0 in { with
w={0 on I'. Since the maximum and the minimum of w on the boundary
are both 0, w must be identically 0 in the interior.

2. The data { fi(x);h(x)} is said to dominate { f,(x);hy(x)} if f,(x) >
fo(x) in § and Ay(x) > hy(x) on T. Suppose { f,; #,} dominates { fsi B, )5 then
the corresponding solutions of (1.4) satisfy u,(x) > u,(x). Proof: w=1u, —u,
satisfies —Aw <0 in @ and w<0 on T. By the maximum principle, maxw
occurs on I'; therefore w(x)< 0 in Q.

3. Exercise 3.2 shows that the solution of (1.4) depends continuously
on the data (in the d, sense).

For a comprehensive, yet accessible treatment of maximum principles,
the reader should consult the book by Protter and Weinberger.

Exercises

3.1. The equation — (ku’Y + qu= f governs steady diffusion in an absorb-
ing medium. Here u(x) is the concentration of the diffusing substance
measured relative to some ambient value (so that ¥ can be positive or
negative), — k(x)gradu is the diffusion flux vector, g(x) measures the
absorption properties, and f(x) is the source density. The effect of
the term qu is to try to restore the concentration to its ambient value.
The same equation also governs the transverse deflection of a string
when there is a springlike resistance (the term qu) to such a deflec-
tion. In both cases it is natural to take k(x) >0, g(x) >0, and we shall

do so.

(@) Let v(x) be continuous on a <x <b and satisfy the strict inequal-
ity
(3.3) —{kv'Y + qv <0, a<x<b.
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3.2

3.3.

34.

Show that v cannot have a positive (or even nonnegative) relative
maximum at an interior point. The example v= —coshx ~ [ on
— I <x <1 satisfies (3.3) with k=¢=1 and has a negative maxi-
mum at the interior point x=0.

(b) Let u(x) be continuous on a <x <b and satisfy
(3.4) —(kw'Y + qu <0, asx<h,

State and prove a weak version of the maximum principle for
positive solutions of (3.4).

(c) If the inequality in (3.4) is reversed, a minimum principle is
obtained for negative solutions of the inequality —(ku'Y + qu > 0.
State appropriate principles for solutions of the equation — (k')
+ qu=0.

{d) Prove uniqueness and continuous dependence on data for
—(ku"Y +qu=f; u(O)=q, u(l)= 4.

Let the continuous functions f, and f, satisfy | f,(x)— f{(x){<e on a
bounded domain Q, while the continuous functions 4, and 4, satisfy
|1(x)— hy(x)[ <e on the boundary T of Q. Show that the correspond-
ng solutions of (1.4} satisfy |u,{x)—u(x)| <ae, where a is a constant
which depends only on £.

Derive a strong maximum principle for solutions of
(k'Y <0, 0O0<x<l,

where A{(x)>0in0<x <.

(a) Derive a strong maximum principle for solutions of
—u" +pu’ <0, O<x<,

where p(x) is an arbitrary continuous function. Hint: First prove
the result for solutions of the strict inequality, and then let
v=u+ ez, where z=exp[a(x — xy)] | with a suitably chosen.

(b) Derive a strong minimum principle for solutions of — u” + pu'> 0,
(¢) State appropriate principles for solutions of —u” + pu’' =0,
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4. EXAMPLES OF GREEN’S FUNCTIONS

Initial Value Problem

A particle of mass m moves along the u axis under the influence of a force
F(7) directed along the axis. The motion of the particle is determined by
Newton’s law with initial conditions:

d%u

(41) mEE=F@), >0 w0)=a, 5‘;—‘;(0)=;3.

If the problem were solved over a finite time interval (0, T3, T would play
no role in the final result. Therefore we may as well consider the equation
on the semi-infinite interval > 0.

Green'’s function g(,7) associated with (4.1) satisfies

2
(42) mgr—faa(z-f), 0<tr<oo;  g(0,1)=0, g(0,7)=0.

The function g(7,7) is the position of a particle initially at rest at the origin
and subject to a unit impulse at time 7. We can regard the impulse as the
limiting case of a very large force X(f) acting over a very short period of
time from r to r+A+s such that

fT+ATX(t)dt= 1.

Such an impulse will cause an instantaneous unit change in the momentum
m(dg / dt) of the particle. Thus (4.2) can be written in the equivalent form

2
m% =0, 0<t<r, 1> g(0,7)=g'(0,7)=0,
43 :
) i

d}
m2 —m

=1
t=T1+ at

f=r—

g continuous at 7= r;

Since both initial conditions apply to the interval (0,7), we find that g=0
until 7=7. The continuity of g and the jump condition on g’ give

0, 0<r <y,
gler)= =T , I>T.
m

The superposition principle can then be applied to the problem with 0
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initial data:
mu” = F(5), t>0; u(0)=0, w(0)=0

with the result

(44) u(t)= [ gty F(r)ar= [T Fryan

0 0 m
Not surprisingly, the displacement u(¢) is independent of the force acting
after time s, The solution of the problem with data {0;a,8} 1s a+ B, so
that the solution of (4.1) is the sum of a+ 8¢ and (4.4). Existence,
unigueness, and continuous dependence on data are easily proved.

Reverting to the x,§ notation and setting m= —|, we see that the
function
0, O<x<§

4.5 A x, &)= ’
(45) O P,
satisfies

d*h .
(4.6) - F =§(x~§), 0<x¢; h(0.8)=h'(0,£)=0.

x

A Green's function for an initial value problem is sometimes called a
causal Green's function. Green's function g(x, £} given by (2.4) satisfies the
'same differential equation but with different side conditions. With § fixed.
k- g satisfies (h—g)" =0 for all x, and h— g must coincide for all x with a
solution of the homogeneous equation, which turns out to be —(1—&)x.
This suggests a method for constructing Green's function for a particular
set of boundary conditions: first construct the causal Green’s function for
the same operator, and then add the appropriate solution of the homoge-
neous equation to satisfy the original boundary conditions (see the beam
problem below, for instance).

Variable Conductivity

Let the thermal conductivity in a rod of unit length be a function k{x)
which is positive and continuously differentiable. The steady temperature
g(x,£) in a rod with a concentrated unit source at £, with its left end at 0
temperature, and with its right end insulated satisfies

(4.7) —%(k(x)%)=3(x—$)s 0<x,é<l; 2(0,5)=0, g(L§=0.
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An equivalent formulation is

—(kg') =0, O<x<§ ¢<x<l; (0,8 =0, g'(1,8)=0,

“®) { gcontinuous atx=§;  k(&)[ g+, ~g(¢{—.H]=—1,

the jump condition on g’ stemming from a heat balance for a thin slice of
the rod containing the source. The functions

y(x)= fk(y) and u{x)=1

are solutions of the homogeneous equation satisfying, respectively, the
boundary conditions at the left and right endpoints. The matchmg condi-
tions at x =§ give

g(x.§)=

Simply Supported Beam
Consider a simply supported beam under a concentrated load at x=¢. The
deflection g{x,£) satisfies :

4

49) §§=6<x—a, 0<x,6<1; g(0.6)=g"(0.0)=g(1,£)=g"(1,)=0,

The shear force F(x) experiences a jump discontinuity from x=£— to £+
to balance the concentrated load:

VE+)=V(§-)=-1L

The moment, the siope and the deflection remain continuous even at x =£.
Since — V=d’/dx* we can write (4.9) as

4

d
2220, O<x<t t<x<];
dx?

8(0,6)=g"(0,&)=g(1,£)=g"(1,§) =0,
2.g',g" continuous at x = §: gr(E+,6)—g"(E—-.8)=1

(4.10)

N
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Applymg the boundary conditions, we find that the solution for x <¢ is
Ax+ Bx®, while for x>¢ it is C(1—x)+ D(1 - x)’. It remains to apply the
matching conditions at . The conditions on g” and g should be used first
to yield g=Ax—(1—£)(x’/6) for x < and g= C(1 - x)— (1~ x)*/6] for
x>£ The continuity of g and g’ then gives A=1{1-§)(2~¢) and C=
51 —&(1+£€). The same result can of course be obtained (perhaps
more intuitively) by using the shear and moment diagrams of Exercise 1.2.

We can also construct g by first finding the causal fundamental solution
h(x,§) satisfying

dh *h

TSm0 0<mg A8 =H(0.=A"(0.6)= (0.8 =0.

An easy calculation gives

0, x <&,

(4.11) h(x.£)= u;ai ot

Therefore g in (4.10) must be of the form A+ A4+ Bx+ Cx*+ Dx* The
conditions at the end x=0 give 4=C=0. At the right end we have
R(1,§)+6D=0 and h(1,§)+ B+ D=0, that is, D=—(1—£)/6 and B=
§1-H(2—§) /6, which when substituted in A+ Bx+ Dx® confirm the
earlier result,

The Infinite Rod with Absorption

The steady-state concentration u(x) of a substance diffusing in a homoge-
neous absorbing medium satisfies

dzu 2
(4.12) wF+qu&f()c), =00 <x < oo,
X

where ¢ is a positive constant, f{x) is the source density of the substance,
and the process can be considered as taking place in an infinitely long
tube, oo <x<oo. (The same equation governs the small transverse
displacements of a string subject to an applied load and a springhike
restoring mechanism.) Green’s function corresponding to a steady unit
input of the diffusing substance at x =¢ satisfies

2
(4.13) -——j~;€~—§-q:"gm6(xw£), — o <x,f< 0.
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Since the coefficients of the differential equation are constants, it will
suffice to find g(x,0) and then set g(x,£)=g(x—£0). This argument
obviously depends also on the fact that we are dealing with the infinite
domain — oo <x<co. Again we assume that g(x,0) is continuous; con-
servation of matter gives —g’(0+,0)+ g'(0—,0)=1. In keeping with the
absorbing nature of the medium, we require that g vanish at x= =+ co, 50
that g(x,0)= e~ /24, and

~qlx £
(414 8. 0)= 5 —

It is perhaps a little surprising that g has no limit as g—0. The reason is
that the nonabsorbing problem cannot obey the condition g—0 as | x|~»00.
On the other hand, the fluxdg /dx obtained from (4.14) has the limits — }

for x>£ and +% for x < £, so that, by integration, we might suspécet that a

solution of (4.13) for g=01is -~ (jx —£|/2)+ C, which is easily confirmed.

Although there is no compelling physical argument for doing so, we often
set C=0, i ;

Method of Images

Consider (4.13) for the semi-infinite interval 0<x < co. In addition to the
condition g—0 as x—e0, we now need a boundary condition at x=0,
which we will take as g(0,£)=0., This means that any of the diffusing
substance that reaches x=0 is removed [the boundary condition g/(0,£) =0
would model a reflecting wall at x=0]. Thus we wish to solve
d’g 2

——= +gg=8lx—§), O0<x, i<

(4.15) dx?
g{0,£)=0, g—lasx—oco.

Let us look instead at an infinite rod with a unit source at x=¢ and a unit
sink at x = —§ According to (4.14), the solution of this problem is

e~ dx—Ei pglxd
16 —
(4.16) 77 P

This function vanishes at x=0 and has only one source singularity in
0<x<oc namely, the original source at x=£ The term e %% /24
arising from the image source at x= —¢ satisfies the homogeneous dif-
ferential equation in 0<x < oc. Thus (4.16) is a solution of the boundary
value problem (4.15). :
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- Figure 4.1

For Green’s function of a finite rod we use a similar idea. If the ends are
both reflecting, say, the boundary condition is dg /dx =0 at both x =0 and
x= 1. We consider the related problem of an infinite rod with pesitive unit
sources located at the set of points £+2n and —£+2n, n ranging through
the integers from — o to oo, as in Figure 4.1. The solution of this problem
is

o pakEr2ny ® gl (=4 I
4.17 e e DS ———
( ) nwz—oc 2q n=zw 2q

which has even symmetry about both x=0 and x=1. Thus this function
has a vanishing derivative at x =0 and x= 1. It is clear from the figure that
of this array of sources the only one in the interval (0,1) is the original
source. Therefore (4.17) is a solution of the problem of the finite tube with
reflecting walls,

Steady Diffusien in a Three-Dimensional Medium

Let € be a bounded or unbounded domain in R, and let x be the position
vector in R;. The concentration u(x) of the diffusing substance satisfies the
partia] differential equation

(4.18) —Au+ g'u=f(x), xeq,

where the constant g*> 0 is a measure of the absorption of the medium
and f(x) is the density of the source. There will of course be boundary
conditions on I, the boundary of ©. The case ¢g=0 corresponds  to
diffusion without absorption or to steady heat conduction.

Let us look at the case where Q is the whole space and there is only a
concentrated steady unit source at the origin. A mass balance (or heat
balance) shows that the flux through a small sphere about the source must

: equal the input in the ball, that is,

du
4,19 lim - —dS=1.
( ) elw{f(l) [xl=¢ on

We also expect u to vanish at infinity. The concentration should clearly
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depend only on the radial coordinate r; since there are no sources for r#0,
we find, on using the spherical form of A, that u(r) satisfies

I df ,du
(420) ——;E(r —;)+qzu 0, r>0,
with (4.19) becoming
| du
(fl.Zl) —1—11_{114775 ( 7 )r=¢-

The substitution v=u/r transforms (4.20) into —¢” + g% =0, whose
general solution is a linear combination of e ™% and e?. Taking account of
the required behavior at r=co, we obtain u=Ae % /r. Imposmg 4.21)
gives A =1/47, and therefore
e” 7

(4.22) U=

4ar ”

The effect of a source at £ is obtained from (4.22) by translation. The
concentration .due to such a source is what we call the free space Green’s
function:

e dx—4l

(4.23) g= pr b

Note that, unlike the one-dimensional case, the limit as g—0 gives the
solution 1/47|x —£| for a nonabsorbing medium. A more important ob-
servation is that Green’s function is now singular at x =£ (in one dimension
g was continuous at x=§£). This is of course the free space Green’s
function for the negative Laplacian:

1
(424) ”Am ‘—“S(X*‘f).

Green’s functions for some simple domains (such as a half-space, a
quarter-space, a slab, a rectangular parallelepiped) can be found by images
when the boundary condition is that the function or its normal derivative
vanishes on the boundary. Other methods for constructing Green’s func-
ttons for partial differential equations will be discussed in later-chapters,
but suppose for the time being that Green’s function g(x,£) is known for
the negative Laplacian in a domain & with g=0 on the boundary I'. Then
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g is the solution of ,
(4.25) —Ag=06(x~-£), x.finfl g=0 xonT.

Let u(x) be the solution of the problem with data {f;0}; that is, u(x)
satisfies

{4.26) —Au=f, xin§; u=0, xonl.

By the superposition principle we still expect the solution to be expressible
as

(4.27) w(x)= js; (6,9 f(©)dé.

Clearly this function vanishes when x is on ' because g does. If we
formally calculate —Aw by differentiating under the integral sign in §.27)
and use (4.25), we obtain —Aw={ as required. The procedure is permissi-
ble if f obeys some very mild restrictions.

Next we express the solution of the problem with data {0; h} in terms of
Green's function. Let o{x) satisfy

(4.28) —Av=0, xin{; v=~h(x), xonT,

and multiply the differential equation by g, multiply (4.25) by v, subtract,
and integrate over { to obtain

e
i

By using Green’s theorem and the fact that g vanishes for x on T, we find
that

ofg) == [ XD (s,
or
(429 o=~ [ 5 neyas,

where the subscript indicates the variable of differentiation or integration.
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The solution of the problem with data {f:4} is then the sum of (4.27) and
(4.29), as stated in (1.5), where the symmetry of g{x,£) was also used.

Other problems of interest have sources spread on surfaces in R,. The
forcing function here stands somewhere between an ordinary volume
density of sources and the most highly concentrated forcing function,
8(x &), corresponding to a point source. Suppose, for instance, that a
layer of sources whose total strength is unity is spread uniformly over the |
sphere |x|=a. The corresponding solution of (4.18) will then depend only
on the radial coordinate r measured from the center of the sphere (the
differential operator being invariant under rotation). Denoting the solution’
by u(r), we see, by using the form of A appropriate for sphencai coordi-
nates, that ‘

e v sy

(4.30) %di( )+qu 0, O<r<a, rra.

We search for a solution which is finite at r=0, vanishes as r-—ac, and '
represents the appropriate source at r=g. The total flux on the sphere
|x{=a+e minus the flux on |x{=a— ¢ must equal the input in the interior
of the shel}, that is,

du
lim — ds+ -wdS = 1.
e—0 '[!iri—a+f on jx|=a-e dn }
Since » depends only on r, this becomes -
du du
N 2122 P il
(4.31) 1 =dra H - )m+ ( & )MMJ_

The solution of (4.30) must therefore satisfy (4.31), vanish at infinity, and
be bounded at r=0. We find that

) g
2AM for r<a, u=B< for r >a.

Since the problem has been reduced to a one-dimensional problem, it is
appropriate to require that x be continuous at r=ga; this condition,
together with (4.31), then yields '

—qa o
I e smhqr, r<a,
4mg a r
U= .
. —ar
! sinhga e  r>a

4ng a r
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As a—0 we should recover the solution g(x,0) for a unit source at the
origin. Taking the limit in the expression valid for r >a, we find that

in agreement with (4.22).

In the case of a line source of uniform umit density, the response u is
independent of the coordinate parallel to the line. It is therefore ap-
propriate to use cylindrical polar coordinates (p,¢) with the source at p=0;
the axial symmetry of the problem suggests that u is independent of ¢ and
(4.18) reduces to

ld(du

-2 = pa’—p

+ g =0, >0.
p dp ) 7 P

This is the modified Bessel equation whose independent solutions are
I(gp) and K{gp). Since I, is exponentially large at oo, we must have
u= AKygp) with A determined from the unit source condition at p=0.
This condition has the form

1= 1im2m(5ﬁ) ,
£} dp p=¢

which in light of the logarithmic singularity of K, at the origin gives 4 = i
and

(432) u= 5= Ko(ap).

Note that in three dimensions a concentrated source gives rise to a
singularity of order 1/|x|, a line source to a logarithmic singularity, and a
surface source to a simple discontinuity in the normal derivative. Only in
the last case is the response continuous across the source.

Interface Problems

Consider steady one-dimensional heat conduction in a rod occupying the
interval —1<x < 1. The rod’s thermal conductivity is the positive constant
k, in —1<x<0 and another positive constant k, I 0<x<1. Such a
problem could arise in dealing with a composite rod constructed by joining
end to end two rods of unit length and of different conductivities or in
attempting to idealize a hererogeneous rod whose conductivity changes
rapidly but continuously from k; to k,. In both interpretations we want to
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reduce the problem to solving constant conductivity equations in the two
halves of the rod, and the question that remains is how to match these
solutions at the interface x =0,

For the heterogeneous rod we are cons;dermg the limiting case as e——>0+
of a problem with a continuously varying positive conductivity k(x,e)
having the property

ky, x<Q,

433) I =
(433) L, k(xe) {kz, x>0.

N
T —.

The limiting conductivity will be denoted by A{x); we have &(x)=k, +
{ky— k) H(x), where H is the Heaviside function. It turns out that it is not
quite sufficient to ask that (4.33) hold pointwise. Instead we will.need to
require that 1/k(x,e) tend to its limit in the L, sense (see Section 7,
Chapter 0), that is;

! 1

3 k(x,s) k(x) dx=0,

(4.34) lim

"

which means that the area between the curves 1/k(x,¢) and 1/k(x) must
go to 0 as e—0 (this does not follow from pointwise convergence alone),
There are many ways of generating exphcn expressions for k(x,e), for
nstance, :

ki+k ky—k,
k(x,e)= ‘2 2 4 Zvr ’arctan—’;i,

but our results are independent of the particular form of k(x,e). The
resulting mterface condltxons are o

(4.35) kyu (O+)—k,u’(0——)=0
and
{4.36) u(0+ )~ u{0—)=0.

The first of these conditions is a consequence of the integral formulation of
the law of heat conduction, which states in our case that the heat fluxes to
the left and right of x=0 must be equal in the absence of concentrated
sources at the interface (see Section 1, Chapter 0). The second condition is
nearly obvious but does in fact require (4.34), as we shall see in the special
case analyzed below.

For a composite rod made by joining two rods together, conditions (4.35)
and {#.36) are appropriate only if the unit rods are joined perfectly at x =0
with no film or gap between them.
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Let us now consider the explicitly solvable boundary value problem

(4.37) —%(k(x,e)%)#i, —-l<x <y w(—1)=0=u(l).

Here we have a heterogeneous rod subject to a uniform density of sources
with its left end insulated and its right end kept at 0 temperature. We are
interested in the limiting case of ¢ tending to 0 for k satisfying (4.33) and
(4.34); we take k,>>k, for the sake of definiteness. In view of (4.37) we
have — k(x,e)u’ = x+1, so that, by (4.33), the pointwise limit of u’ exists,
and

+1
*xk , x<0,
- 1
: him w'{x,e)=
(43%) i S
k2 B x -

We shall denote the function on the right of (4.38) by «'(x). We observe
that «'(x) is discontinuous at x=0 and satisfies (4.35) despite the fact
that, for each £>0, u'(x,e) is continuous at x=0. The situation is
illustrated in Figure 4.2. For a fixed small value of ¢ there is a very sharp
change in «'(x,e) in a thin transition layer around the interface; the
continuity of «'(x,e) at x=0 is deceptive—the useful information is really
contained in the discontinuous function u'(x).
Since u(x, &)= - [ u'(n,e)dn, we have

(4.39) w(x,e) = f k’};’i)
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where, in view of (4.34), the limit as e—0 may be taken under the integral
sign, so that

CpimEt 3 X2
[ o=l ) =0

(4.40) u{x)= | , ; | ,
b+l tg+l 3 1 X
L 3 d”q+_f‘; P dn ki(xﬁ— ) x <0,

which is certainly continuous at x =0. The continuity of u(x) is guaranteed
from the fact that we can pass to the limit under the integral sign in (4.39),
making u(x) the integral of a piecewise continuous function, and such an
integra! is of course continuous.

Since the interface conditions (4.35) and (4.36) are deduced by a limiting
process from a continuously varying conductivity, we shall call them the
natural interface conditions.

Let us now calculate Green’s function g(x,£) for a composite rod with
natural interface conditions at x=0 and the sarme boundary conditions as
in (4.37). We first place the unit source at £ in the left half of the rod, so
that g satisfies

—g"=0, —1<x<&E<x<0,0<x<1;
g’(_19$)=09 g(}’é)ﬂo;

(4.41) ,
g(£+=$)=g(€_a‘§): 8’(5"‘,5)‘8'(5“‘”,5)“—“—;(—],

g(0—,4)=g(0+,¢), kyg'(0—,8)=k,g'(0+.§).

If we solve the homogeneous equation in each of the three intervals and
take into account the boundary conditions at x = =+ I, we are left with four
constants to be determined by the two interface conditions and the two
matching conditions at the source. It is often preferable to begin with a
solution which already satisfies the source conditions; an obvious candi-
date is the causal Green’s function h(x,§)= H(x — (¢~ x)/k, for a rod of
conductivity k. The desired Green’s function g(x,£) differs from 4 by a
solution of the homogeneous equation in — 1<x <0; in 0<x <1, g(x,£) is
a solution of the homogeneous equation. In view of the boundary condi-
tions we can write

(4.42) - x4, x<,
B(l-x), x>0
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It remains to apply the interface conditions to obtain

£ i4=B  —1=kpB,
ky
so that
_ 1 _1_ £
= T Tn

We leave as an exercise the calculation of g(x,£) when the source is in the
right half of the rod.

What are the natural interface conditions for more complicated differen-
tial operators? We now present a method which avoids the limiting process
described earlier. Suppose we want to solve the steady neutron diffusion
problem

_%(k(x)%)-f—q(x)uﬁf{x),

(4.43)
where the source density f is a given piecewise continuous function, k{x) 1s
the diffusion coefficient, and g(x) is related to the collision cross section
and the multiplication factor [see (5.23), Chapter 0]. Normally one assumes
that g is continuous and k smooth and then searches for a classical
solution u. However, the left side —(ku') + qu can be piecewise continuous
under weaker conditions on & and g. Suppose, for instance, that & and g
are only piecewise continuous; then — (ku’Y + gu will be piecewise continu-
ous if {a) ku’ is piecewise smooth so that (ku') is defined as a piecewise
continucus function, and (b) gu is piecewise continuous. Now, if ku' is
piecewise smooth, it is certainly continuous, and therefore v’ is piecewise
continuous, so that  is continuous, and the condition on gu is automati-
cally satisfied. In applying these ideas to concrete problems, we usually
solve {(4.43) in the subintervals where both & and ¢ are continuous; this
leaves us with constants of integration that are explicitly found by applying
interface or matching conditions at the ends of subintervals. Two condi-
tions are needed at each interface x;:

(4.44) Alku');=0, A, =0,

where AF; is the jump in F at x;, that is, F(x,+)— F(x,—). If only ¢ is
discontinuous at an interface, the matching conditions are

(4.45) Au=0, Ay =0

4
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In one-dimensional quantum mechanics, the Schrodinger equation has the
form

(4.46) W[ E-V(x)u=0,

where E is a constant and ¥(x) is the potential. Often ¥ is only piecewise
continuous (as in problems of a rectanguiar well or a rectangular potential . {
barrier). One then solves for u in the various intervals of continuity of
¥(x); at the points where V is discontinuous the matching conditions are
(4.45).

For a more complicated problem such as

(ryu”y" +{rt’Y + rou=f,

where the coefficients may only be piecewise continuous, one writes the
left side as

[(ru”) + ru' 1+ rou.

To make this piecewise contmuous we need the following: (a) r,u”
piecewise smooth (hence r,u” continuous, 1" piecewise continuous, & and
u continuous); (b) (r,u”Y + ru’ piecewise smooth (hence contmuous); (c)
rou piecewise continuous [follows automatically from (a)]. This gives us the
four interface conditions:

(4.47)  Au =0, Auf =0, Alryu"), =0, Al (ru"y +rw'],=0.

As an iltustration, consider the small transverse deflection of a beam of
constant cross section whose stiffness changes abruptly at x=0. If E(x) is
the stiffness of the beam, the deflection satisfies

(E(x)ulf I8 mf(x),
so that, according to (4.47), the interface conditions at x =0 are
(448)  Aug=0,  Aup=0, A(Eu")y=0,  A(Eu")) =0.

These conditions have a very simple interpretation: the deflection, slope,
moment, and shear are all continuous at x=0. In particular, if E is the
constant £, for x<0 and the constant E, for x>0, these conditions
become

u(0+)=u(0-), W (0+)=0(0-),
Eu"(04+)= Eu”(0-), Ew"(0+)=Eu"(0~).
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in Exercises 4.6 and 4.7 we give examples of different kinds of problems
for composite beams that do nor lead to natural interface conditions.

Exercises

4,1, Let g° be a positive constant. Find Green’s function g(x,£) satisfying

—g"+gg=8(x—£), 0<xi<l; g{0,8)=g(1,8=0

by the direct method of Section 2, that is, by starting with two
solutions u,,u, of the homogeneous equation satisfying, respectively,
the end conditions at x=0 and x=1 and then matching them under
the load. Compare your result with the one obtained by images,
(4.17). Do you notice anything strange as g—{07

4.2. (a) Show that the electrostatic potential for a line source of uniform
unit density is w=(1/2mlog(1/p), where p is the cylindrical
coordinate measured from the line source (which coincides with
the z axis).

(by Consider the two-dimensional problem

2 2
_Auﬂwﬁ_%u—a—‘;%, %30, = 00 <x, < 00}
(4.49) dxi  dx;
u(x;,0) = h(x,),

where A(x,) is a given function. First find Green's function g{x, §)
for 0 boundary data by the method of images [using part (a)].
Then write the solution of (4.49) by using (1.5) as

(450)  ulro)=1 [0 2 n()at,

T x§+(x1mgl)2

4.3. An elastic beam is subject to a restoring force proportional to the
local displacement and tending to oppose it. If a transverse distrib-
uted load f(x) is applied, the appropriate differential equation satis-
fied by the deflection u(x) is

d*u
E;Z + k' =-""f()C),

where £* is a positive constant regarded as known,
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4.5.

4.6.
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(a}) Find the deflection in an infinite beam — co <x < oo, when the
applied load is a unit concentrated load at x=§¢ This deflection
is the free space Green’s function.

(b) Find the causal Green's function for the problem.

(c) For a beam simply supported at its ends x =0 and x= 1|, find
Green’s function first by using the causal Green’s function of

part (b) and then by using the method of images. f ¥

Consider neutron diffusion in all of three-dimensional space. The j
ball {x| <R and its exterior are different homogeneous media that are i
in perfect contact, A uniform laver of sources of surface density p is J
located on the sphere |x|=a, where a<R. Set up and solve the |
boundary value problem for the neutron density. Consider also the i
limiting case of a point source at the origin, * i

Quasi-derivatives. Consider the equation of order 2p:
{4.51) (rp(x)u{"))w+ et (nuY b ru=f.
We can write the left side as

ulb]( x),
where the quasi-derivatives u™)(x) are defined by

Wl=gy,  yll=y | yle- sy b
lrl = ()} o+ o IPhy [p—1]
u ru'®), u (Y +r, u .

Wt A= (e Ny gy yte=3)
Show that the differential equation {4.51) then becomes
ut?Pl= f,

and that the natural interface conditions take the simple form that
wul'l w1 be continuous.

A simply supported composite beam of constant cross section oc-
cupies the interval 0<x <2/, The left half has Ef= 1, whereas the
right half is rigid and the two halves are welded together at x=/. A
concentrated unit fransverse force is applied at x=¢, where 0 <£</.
Draw the shear, moment, slope, and deflection diagrams. Express
these analytically.

[
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4.7.

4.8.

A homogeneous beam of constant cross section Is attached to a
string. The beam and string are stretched under tenston H between
the fixed points x=0 and x=2/, the beam occupying the interval
0<x </ and the siring the interval /<x <2/ The left end of the
beam is simply supported. A transverse concentrated unit force is
applied at x=1//2. What are the interface conditions at x=/{? Find
the deflection.

Consider the case of a steep potential well or barrier in (4.46), which
can be ideally represented by a potential F(x)=ad(x), where a is a
real number. Although such a problem does not fall into the class
studied in Section 4. it can nevertheless be solved. The principal
interest is in the matching (connection) conditions at x=0. If we
assume u continuous at the origin, a formal integration of (4.46) gives
W (O+)— w{0—)=au(0). Show that the same result is obtained by
replacing the delta function in (4.46) by the sequence

1
fxy=]m O<x<o,

0, otherwise,

and then proceeding to the limit as #-—»co.
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2

The Theory of

Distributions

1. BASIC IDEAS, DEFINITIONS, EXAMPLES

Various examples of Chapter I, Section 4 show that one frequently
encounters sources that are nearly instantaneous (if time is the indepen-
dent variable) or almost localized (if a space coordinate is the independent
variable). To avoid the cumbersome study of the detailed functional
dependence of such sources, we would like to replace them by idealized
sources which are truly instantaneous or localized; such idealized sources
are said to be impulisive or concentrated (as opposed to distributed sources).
Typical instances of such sources are the concentrated forces and moments
of solid mechanics; the heat sources and dipoles in heat conduction; the
point masses in the theory of the gravitational potential; the impulsive
forces in acoustics and in impact mechanics; the fluid sources and vortices
of incompressible fluid mechanics; and the point charges, dipoles, multi-
poles, line charges, and surface layers in electrostatics.

What do we expect from a mathematical theory of concentrated
sources? First, there should be a clear and unambiguous mathematical
framework in which such sources have equal standing with distributed
sources. Second, a method should be provided for calculating the response
to a concentrated source, that is, a means of interpreting and solving a
differential equation whose inhomogeneous term is a concentrated source.
Third, if a concentrated source is “approximated” by a sequence of
distributed sources, the response to the concentrated source should be a
suitable limit of the sequence of responses to the distributed sources.

Functions as Linear Functionals

Consider a real-valued, continuous function on R,. The function fis a rule
which associates with each point x in R, a real number y = f (x), the value
of f at x.
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